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Abstract

With respect to the circulation of vehicles within an inter-
connected  network  of  arteries,  we  analyze  the  temporal
evolution  by  applying  sequential  iterations  of  stochastic
matrices, each representing a single image of the network.

modeling was based on a discretization approach, i.e. con-
sidering  the  passage  of  vehicles  from  one  intersection  to
the next. In fact, each formal step represented an increase
of  one unit  in the exponent of  a  transition matrix.  In the
present  study,  still  using  Markov  chains,  we  modify  the
model by considering a continuous process. We set the de-

a goal to be achieved, taking into account the detailed en-

as  a  digraph,  to which an ad hoc proposal  for  a  steady-s-
tate matrix is associated. From the stationary matrix that is
generated in this way, a continuous evolution matrix with

ing an initial population of vehicles within the formal net-
work as a vector, one applies to it a continuous evolution
matrix containing the available information; one can con-

steady  state.
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Introduction

it  is  a  challenging  task  for  the  urban  planners.  Research  has
been carried out  in  many articles  and reports,  among which
we  cite,  for  example,  the  references  [1–25]  and  the  books
[26,27]. In previous work [28,29], the sites and connecting ar-
teries  are  represented  by  digraphs  containing  vertices  and
edges; mathematically, they are expressed as stochastic matri-
ces  whose  diagonal  entries  represent  the  number  of  vehicles

resent  transition  probabilities  (edges).  Now the  digraph  also
has vertices and edges, but the edges represent the transition
from one artery to another, and the vertices represent the pop-

stochastic  matrix  developed  from the  desired  steady  state.  If
we  multiply  an  initial  vector,  whose  components  represent
the  one  distribution  of  vehicles,  by  the  stochastic  matrix  at
time t, we obtain the distribution of vehicles at that time. As a

model in the next section.

Mathematical Properties

We will present important new properties of stochastic matri-
ces with application to the construction of Markov chains. In
particular,  we study the generation of  continuous evolutions
with respect to a stationary state proposed as optimal, and the
uniqueness of the solution will allow its application to numer-

where  I  is  the  unitary  matrix.  Using  the  generator,  we  con- struct a new stochastic matrix,

that can be associated with time in order to study the evolu-
tion of a physical system. A continuous evolution of a system

that could be governed by a Markov chain can now be de-

scribed by M1(t). Obviously the matrices M0 and M1(t) com-
mute, since one is a function of the other:

We will prove the following Lemma:

Consider M0 and M1 two stochastic matrices that commute.

Let M0 and M1 be two commuting stochastic matrices, let π

be the stationary vector of M1, i.e., it is true that π is an eigen-
vector:

Multiply (4) by M0 on the right,

and with (3)

According to (6) α is an eigenvector of M1, them

matrix generated in (2) has the desired stationary state, which

(         )
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is determined by M0.

Both  matrices  have  the  same  stationary  vector,  i.e.  the  same
stationary  state.  However,  it  is  possible  to  iterate  the  proce-

dures  (1)  and  (2),  generating  several  continuous  evolutions.
We will now show that they are all equivalent with a suitable

M0 is already a sta-
tionary matrix. A second iteration of (2) will be done,

Where M2(t2) converges to the same steady state as M1 and

M0. We now set (2) equal to (9) to obtain a relationship be-
tween t and t2. A condition for (2) to be equal to (9) is as fol-
lows,

etG0 = et2G2

pansion of the etG0,

We will  calculate  the powers  of  G0,  remembering that  M was considered to be a stationary matrix,

and of course, mains,

Substituting in (10),

Figure 1: Time relationship between two consecutive iterations, see text, equation (14)
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in the n−th iteration the time is scaled in the following way,

iteration by a temporary transformation (15) that does not de-
pend on the matrices.

Figure 2:

Example of Transit Application

In the previously cited works [28,29] it was shown, using real
values  of  vehicle  mobility  in  a  city,  that  this  mobility  can be
modelled using a  Markov chain.  As shown in [29],  excellent

lance  cameras.  Now  we  will  see  a  more  ambitious  problem
than the  one solved in  the  previous  works.  Instead of  a  pas-

tion can be represented by a Markov chain, we will optimise
the vehicle movement according to a planned end state. Sup-
pose there is a certain area where many vehicles enter, either
for tourism or for a special event. In general,  such an area is

this area, supposedly enough to accommodate the entry of all
vehicles,  and the problem is  to make this  entry as orderly as
possible to minimize any possible congestion. Instead of con-
centrating on intersections, as in works [28] and [29], we will
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let’s assume a circulation scheme like the one shown in Figure
2. We can assume that the vehicles move in an area of about 2
km x 2 km, although this is not important for the model. Vehi-
cle  entry  can  come  from  many  entrances  to  the  area  under
consideration,  it  is  a  reasonable  approximation  to  assume
that the contribution from, say, three key locations. We will al-
so assume that the tourist attraction is located near the main
parking  lot  P,  although  the  vehicles  can  park  at  other  loca-
tions,  which  we  will  represent  by  p.  At  this  point  we  have
come to a key aspect of how to deal with this issue. p will be a
node of the digraph, but it will be relatively delocalized in a ge-
ographical sense. p is everywhere in the area under considera-

cally named E, but the third will take into account other multi-
ple accesses that are less relevant and that it will not be neces-
sary to locate exactly, called e.

Inspired  by  the  center  of  the  city  of  Tigre,  we  will  consider
three main access  routes  to the areas  of  interest  A,  B and C,
see  Figure  1.  Circulation through internal  roads  to  the  main

voir that holds a certain number of vehicles ready to enter the

graph that corresponds to this is shown in Figure 3.

Figure 3: A digraph that synthesizes the connections corresponding to those in Figure 2. Note that, assuming the main arteries
have dual circulation, the transition from one node to the other can be in either direction

Table 1:

A B C D E e P p

N
A

N
B

N
C

N
D

N
E

N
e

N
P

N
p

tion  about  the  number  of  vehicles  circulating  in  the  arteries
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(A,B,C)  or  in  the  inner  streets  (D),  the  number  of  cars

stopped in each parking lot (P,p), and the number of incom-

ing and outgoing vehicles (E,e).

be distinguished, and even the number of arteries of interest
could be increased, thus increasing the number of elements of
the  population  vector.  For  the  purposes  of  this  example,  we
will limit ourselves to the suggested nodes. For the purpose of
illustration of the behaviour of the model, we shall be content

with  these  eight  elements.  Initially,  there  will  be  a  certain
number  of  vehicles  at  each  node.  For  simplicity,  we  will  as-
sume that there are zero vehicles parked at P and p in the ear-
ly  morning,  that  there  are  a  certain  number  of  vehicles  that

normally circulate through the arteries and streets (A, B, C,

and D), while the number of vehicles that will enter (E and e)
is a certain fraction of those that will enter during the morn-
ing. In principle, the next step would be to construct the theo-
retical transition matrix, see Table 2.

Table 2: Transition matrix

 A B C D E e P p

A pAA pAB pAC pAD pAE 0 0 pAp

B pBA pBB pBC pBD pBE pBe 0 pBp

C pCA pCB pCC pCD 0 0 pCP pCP

D pDA pDB pDC pDD 0 pDe 0 pDp

E pEA pEB 0 0 pEE 0 0 0

e 0 peB peC peD 0 pee 0 0

P 0 0 pPC 0 0 0 pPP 0

p ppA ppB ppC ppD 0 0 0 ppp

the  mathematical  tools  developed  in  section  (2).  To  do  this,
the number of vehicles entering the area should be temporari-
ly controlled to allow them to move from the entrances to the

distances of the main arteries are A = 2000m, B = 1900m, C =

2400m, D = 1000m, in the latter case a possible route through

of the entrances to the main parking lot P is about 1500m. As-

suming a conservative average speed of 30 Km/h, the time re-

quired to drive from any driveway to Parking Lot P is approxi-
mately 180 seconds. It is reasonable to assume that the cars

have an average length of 4m, in addition to 30 km/h, the pre-

scribed distance between vehicles is 2 seconds, or about 16m.
We assume that the average vehicle in circulation is approxi-
mately 20 meters in length. Considering a circulation capacity
of two vehicles in parallel, the circulation capacity in number

of vehicles destined for P or p will be at any moment: A =

200v, B = 190v, C = 240v, D = 100v. In the stationary state, it
is  desirable  for  the  number  of  entering,  circulating,  and
parked vehicles to be similar. We will propose the following
stationary population vector,

Table 3: Following stationary population vector

A B C D E e P p

200 190 240 100 600 130 600 130

stationary vector:
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Figure 4:

For demonstration purposes, we do not take into account the
vehicles  that  naturally  circulate  in  the  area  of  interest.  Since
the arrival time at the car parks is about 180 seconds, and con-
sidering  that  the  parking  time  can  be  about  120  seconds,  a
step to steady state would have been made in 300 seconds. Us-

ing we construct the steady state matrix M0 and through (1)
and (2) we obtain the continuous evolution matrix that con-

t
= 7 the stationary state has been reached by less than one vehi-
cle:

Taking into account the duration of each parking step, steady
state would be reached in 21 minutes, see Figure 4. In fact, af-
ter  15  minutes,  more  than  90%  of  the  steady  state  has  been
reached.

From  now  on,  vehicle  movement  will  continue  as  originally
requested. Of course, there will be a time limit, which will be
set  by  the  car  park  capacity  or  the  number  of  vehicles  that
want to enter.

Conclusions

[1–25], the strong contribution of this work is to propose a de-

trol method, compatible with this control, based on continu-
ously  evolving Markov chains.  Mathematically,  the  algebraic
evolution has been established and shown to be a uniquely de-
termined path. Independently of the proposed stationary ma-

tion  using  powers  of  the  transition  matrix  (Table  I)  and  the
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continuous evolution proposed in this paper. Note that in the
initial  transition matrix the possibility of  e.g.  going from car

park P to artery A is zero. However, if the evolution is deter-

hicle going from P to A is pPA = 0.0165...., i.e. it is not zero.

In fact, a car can go from P → C → A, and in continuous evolu-
tion this  possibility  is  always  present  due  to  the  multiple
paths that eventually connect all the nodes of the digraph, al-
though of course with extremely low probability. As we ap-
proach the steady state, this probability is still low but has in-

creased a little: pPA = 0.0912. Under this formalism, the mo-

haviour can be compared to the concepts of fuzzy sets or
quantum probabilities. In addition, these concepts can be ex-
tended to the logistics supply chain or to industrial assembly
lines. Obviously, the adaptation of a real case would require
more precision in the determination of distances and times.

ly, and it should be noted that in the event of accidents or
other events that alter the normal development of vehicular

ly. Controls on access to the area in question shall respond by
modifying the means of access.
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