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Abstract

By means of the weight functions, the idea of introduced
parameters and the techniques of real analysis, a multidi-
mensional halfdiscrete reverse Hardy-Hilbert’s inequality
with one partial sum is obtained. The equivalent state-
ments of the best value related to parameters are consid-

ered, and some corollaries are deduced.
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Introduction

Assuming that p > 1,1 +——1am,b > 0,0 <> * ab, < ocoand 0 <

Yo bl < 00, we have the followmg Hardy-Hilbert's inequality with the best
value s (cf [1], Theorem 315):

=

sz—i-n sin ;{) <Z_1a£‘> <;bz> ' (1)

m=1n=1

Setting f(x),g(y) > 0, 0 < [ fP(z)dx < oo and 0 < [° g%(y)dy < oo,
we have the integral analogue of (1 ) with the same best value named in
Hardy-Hilbert’s integral inequality as follows (cf [1], Theorem 316):

[ < 2 ([ e ([ )

In 2006, by means of Euler—Maclaorin summation formula, Krni¢ et al.
2] gave an extension of (1) as follows:

ii m—i—n

m=1 n=1

< B(A\,\2) (Zmpl A)= ) (anl Az) 1b‘1> . (3)

where, A\, Ay € (0,2],A\; + Ao = A\ € (0,4], the constant B(A1, A2) is the best
value, and

o) tufl
Bluv)= | ————dt,u,v> 0 4
(u,v) /0 T U, v (4)

is the Beta function. In 2019, by means of (3) and Abel’s partial summation
formula, Adiyasuren et al. [3] obtained an extended application of (3) involv-
ing two partial sums. In 2020, Mo et al. [4] gave an extension of (2) involving
two upper limit functions. Inequalities (1)-(2) with their extensions played
an important role in analysis and its applications (cf. [5]-[15]).

In 2016-2017, Hong et al. [16]-[17] considered several equivalent condi-
tions of the extensions of (1) and (2) with a few parameters related to the
best values. Some other results were provided by [18]-[20]. In 2023, Hong
et al. [21] gave a more accurate multidimensional half-discrete Hilbert-type
inequality involving one derivative function of m-order, and [22] gave an ex-
tended inequality with the same kernel involving one multiple upper limit
function. Some dependent results were published by [23]-[27].

In this paper, following the way of [21] and [22], by using the weight func-
tions, the idea of introduced *irameters and the techniques of real analysis.
a multidimensional half-discrete reverse Hardy-Hilbert’s inequality with the
new kernel as angw (, A > 0,i € {0,1}) with one partial sum is
obtained. The equivalent statements of the best value related to parameters
are considered, and some corollaries are provided.
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Some Lemmas

In what follows, we assume that

(H1). p<0(0<gq <1,
€ (0,A),mg,n € N:

)\17 )\2
exists a constant 7y < 1,
(mo — 1,00), with u(co) =

AD = g, AD

%+%:1,Q,BER+ =

(0,00), A > 0,

= {1,2,--- hu(z),v'(z) > 0,u"(x) < 0, there
(z

such that (u

))Amoq! (x) is decreasing in = €

OO)\1:>\>\2+>\1)\2:>\>\1+, 20’

= Z;cnzmo Q. (k:,m € Nmo = {mo,mo =+ 17

AR = o(e™m) (¢t > 0;m — o), and

- }), satisfying

For g(y) >0, y = (y1,---

Jyn) € RYL, lylls =

(> yiﬁ )%, we still have

0 < / ]2 " g1 () dy < oo.

R%

Remark 1.

(i) For v € (0,1],mo = 1,u(x) =

Tx € (0,00), A €

(0,%),u(m) > 0,u/(z) = vyt > 0,u"(z) = y(y — 1272 < 0,u(o0) =
) =

lim, oo 27 = 00, M9 € [N — % +1,1), (u(x))M =m0y (z

decreasing in z € (0, 00).
(ii) For v € (0,1],mq

=2, u(x)

=In"z,x € (1,

= fm;()\l—no—&-l)v—l is

00), A\ € (O,%), u(z) >0,

W(z) =2z > 0,u"(z) <0, u(00) = lim, o In” & = 00, 7y € [N — %y +
1,1), (u(x))=mu/(z) = %ln(’\l_m“h_1 x is decreasing in = € (1, 00).

If M > 0,¢(u) (u> 0) is a nonnegative measurable function, then we
have the following transfer formula (cf. [5], (9.1.5)):

/ /{yGR" ;0<>°

- Ty J, v

(1) For |lylls = M[> (47

1
Mu?, we have

/ o(llylls)dy

= lim / /
M—oo {yeRn O<Z y

M ”F”
= lim

)87

5/

Yi
e @D(;(M) )dyi - dy,

5. (5)

(u) = <P(Muﬁ) by (5), setting v =

Yi gL
o(M )y - dy,
ey PO

1

o(MuB)us'du

_ F”(B) > n—1
= —— )/O o(v)v" dw.

7T

(6)
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(i) If (|lylls) = ¢(Mu?) = 0, for u = Y3 < (3p)” (0> 0), e
llyllg = Mu? < b, then by (6), it follows that

. Mnrn(%) ! 1 n_q
/ Allolladdy = Jim =t [ pudyd
[yeR7 Iyl >} woo BrL(E) Jigye
() =
B n—1
= — e(v)v" "dv 7
i, A g
Remark 2. Forb=1,c€ Ry, p(v) =v"* " in (7), we have

/ ||y||—ac—ndy o /OO U—ac—nvn—ldv _ Fn(%) (8)
wery sz} 1 acfm 10 (G)

Lemma 1 Suppose that s € (0,00), s1,$2 € (0, s), there exists a constant
no < 1, such that (u(z))®~™u/(z) is decreasing in (mg— 1, 00). We define the
following weight functions:

e o (@m) )
o) s =l Y GRS ERD, )

m=mgo
yll5™ " dy

mlonm) = (ulm) ™ [l

The following inequality and expression are value:

(m € Np,).  (10)

ws(s1,y) < B(s;,s—s1) (y € RY), (11)
ws(s2,m) = 1m—(%)B(s — S9,82) (m € Ny,). (12)
s ) aﬁ”—lf(%) ) mo

Proof. Since u'(x) > 0,m9 < 1, we observe that

(u(@))™ /() (= (u(@)™ (ul@))™ "' ()

is still decreasing in (mg — 1,00). In view of the decreasingness property of

series, setting v = ﬁ(ﬁ) we find

s1—1,,/

i) < iz [T L,

1 (u() + [lyl15)°

o0 /USI*]-
< dv=DB -
< /0 CESL v (s1,8 — s1),

and then we have (11).

n (6), for p(v) = —L2 " setting t =

TS %, we have

(L ~
@s(s2,m) = %(U(m))s‘”/o (

ERE () =07

as2 —nvn— 1

asao—1

= g G
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F"(%)B(SQ, S — S9) B F”(%)B(s — S92, 89)

BTN BTG

and then we have (12).

This proves the lemma. [

Lemma 2. With regards to the assumption H1, for ¢ > 0, we have the
following inequality:

Z e~ (4! (m) Z e me, (i € {0,1}). (13)

Proof. For i = 0, since a,, = AV, (13) keeps the form of an equality; for
i =1, since AY e—tutm) — o(1) (t > 0;m — 00), by Abel’s partial summation

formula, we find

—tu(m) — : (1 —tu(m) (1) ftu(m i ftu(m+1)
Z e A, nlbl—lgo AL + Z AW )

m=mg m=mg

_ Z AQ) (g=tulm) _ g=tu(m1)y (14)

m=mg
We set function f(z) := e 2 € (mg — 1,00). Then we find
f(x) == —te @/ (z) = —th(x),

where, h(z) = e”™®/(z) is decreasing in (mo—1, 00), in view of u(z), v’ (z) >
0 and u”(z) < 0. By (14) and the differentiation mid-value theorem, there
exists a 0, € (0, 1), such that

$ etulmg,, — - Z AD[f(m + 1) — f(m)]
_ Z ADf(m+0,) =t Y ADh(m +0,,)
< £ AR =t 32 e (m) A,

and then we have (13).
This proves the lemma. [J
Lemma 3. With regards to the assumption H1, we have the following

inequality:
amg
d
/ 0 Z )+ IIyI 5

+ m=my

I"(4)BO— Aa. Ao)
oF T (3)

) Bi(A, A —\)

SCIENTIFIC EMINENCE GROUPRP | www.scientificeminencegroup.com

Volume 1 Issue 2



World J Adv Appl Phys Math Theo

[ Y ] [ | |ry||%<“*>“gq<y>dy] )

m=mg

der’s inequality (cf. [28]), we have

_ - (u(m))-2/9q,,
b= / 1% +Ily|lﬁ> lllyll(” P (m >>1/q]
191152 P g(y)
[<u< ]dy

" Calm)) 3 a (1w (m))—Va

{Z o G T rr(;\(r:l)i:)%f’ﬁdy}p

Lo 2 G e ﬁ()y)ldy}q
(o [ ] e

- {/R [Hyug<“” > &fjﬁﬁyﬁgl ||yg<”ax2>”gq<y>dy}é

m=mgo

— [ > WA()\Q,m)((u,<m>>,1\_pa£L

u(m) D+

v

1
I3

1

wml,y>||y|\z(”‘“2>‘"gq<y>dy]

By (11) and (12), for p < 0 (0 < g < 1), s = XA > 0, s = A\ € (0, ),
s = Ay € (0,), (u(z))™ ™/ (x) = (u(z))M ™u'(x) (ny < 1) is decreasing
in (mg — 1,00), in view of H1, we have (15).

This proves the lemma. []

Main Result

Theorem 1. With regards to the assumption H1, for i € {0, 1}, we have the
following multidimensional half-discrete reverse Hardy-Hilbert’s inequality
with one partial sum:

o (m) A g(y)
/nZ m>+||y||> e

+ m=myo

1 (T3)BO= A )\ P
N BT (%)

Q=

Bi(A, A —)\p)

< S nn] o] oo

m=mgo
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In particular, for A = A\ + A9, we have

/ -p

p
0 < Z ) p@l et <
m=mg
0 g(n—aXz)—n g4 d
< yll5 9°(y)dy < oo,
RY

and the following inequality:

(4)
/. Z + HyH >A+iAmg(y)dy

+ m=myo

WAL
> ;(m) B()\la)\Q)

x [Z (S@fgﬁ))()m] [ [l ga| - an

m=mo +

Q=

Proof. By the following expression of the Gamma function:

— : Pl (u(m)"_l‘y'lﬁ)tdt’
(u(m) + [lyl[g)**" (A +1)

(13) and Lebesgue term by term theorem (cf. [29]), we have

I = 1iAD g * primt )+ gy | g
T oy 2o At [ [0 y

+ m=myo

1 -1 zu(m i A2
:m/ (Ze w4

m=mgo

" (/ €|y||gtg(y)dy> gt

+

1 oo )\ . i e _ o
it [y } : —eu(m) g / Wt o (o)) du | dt
F(/\+i)/o ( ’ ! ie sy

m=mg

1 > o0 o
_ - A1 —m)+ll$) g | g
FAH/nmE ag(y){/ e y

amg I)\
>\+@ /n ; +||’y||5) Al

Then by (15), we have (16). For A = A\; + Ay in (16), we have (17).

This proves the theorem. [

Theorem 2. With regards to the assumption H1, if i € {0, 1}, A\; + Ao =
A, then the constant factor

v

1 <Fn(/lg>B(>\ — A2, A2)

il Bi(A, A — A
A aﬁn—ll“(%) > ( 1y 1)
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n (16) is the best value.
Proof. We need to prove that the constant factor in (17) is the best value
for i € {0,1}. For any 0 < ¢ < min{|p|Aa, |p|(1 — no), g2}, we set

AD = G, = (w(m)M T (m),

Ay = Z a = Z (UJ(k))(/\l_E) 1ul(k)7 m € Nm07
k=mg k=mg

N 0,lyllg <1

g(y) = a(r2—£

—n .
ol llylls = 1

Since € < [p|(1 — np), both

(@)™ 2 (@) (= ()T (u()) 0 (@)

and (u(z))™*" "/ (z) (= (u(x)) "M==t =D[(y(z)) ~™u/(2)]) are strictly de-
creasing in (mg — 1,00), we find

A < [ ™ @ < 3wy,
and then for i € {0,1}, it follows that
A < ((?ﬁfm—_))};f(wm»“f»“* (m € N,), and
m; (u?;g?;z+l - (uu;r(L:;())anl +m_§m;+1%
= Pt i O G

If there exists a positive constant M, with

1 TG 7
M > N <aﬁ"——11“(%)) B(A1, A2),

such that (17) is valid when we replace the constant factor by M, then in
particular, by (8) (for ¢ = 5) we have

7o m)) AR G(y)
I /nZ +Hy\|5) i

+ m=myg
< (u(m))rar, |7 / dn—are)—n~g ’
> M Y : dy
_mzrno ( (m))p()\l 1)+1 Ri H Hﬁ ( )
Y i ul(m) >p </ HyH—aa—ndy>q
o= (u(m))H! weRLlblls21r

M RO
> %+ ] <aﬁn—1r<g>> |
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a(A n
0o (A2—%)- dy

~ 1 WM EF 1 (m [yl
TS ooy 2 (o) ()/mw<>+mmw

e Y

- AM—E4i-1_ s i gy
<3 (ulm)) 5 ) [ Mm+wwi

m=mg
Fn( ) oo / o t>\2_§_1dt

< -
aﬁn—lr’ % )\1 _E)i mzmo +1 /0 (1 + t))\—l-z

() Butitia ) 1
aFIE) (-2 {HdWWA

Based on the above results, we have the following inequality

I"(3)  Bu+i+gh—9) 1
afrIT(5) (M- 5) [gb ' <U(mo)>f}

RO
%+wmw]<wwna>

For e — 0T, in view of the continuity of the Beta function, we have

> el>M

B(A\ + 1, A) (1) rr(d)
AT TN ZM<an@)'

Since i € (0,1}, N'B(A\1 + 14, Xa) = NiB(\1, \2), it follows that

Therefore,
M = (#) B(>\17>\2)
Al aptT B

is the best value in (17) (namely, for Ay + Ao = A in (16)).
This proves the theorem. []
Theorem 3. With regards to the assumption H1, if the constant factor
in (16) is the best value, then for 0 < A—X\;—X\y < |p|)\1, we have )\1+)\2 A

Proof. F0r>\ = A )‘1 ’\2+)\1,)\2 = A= Al —i-)‘z, we find )\1+)\2 = A\

For 0 < A — >\1 — A < —pA1, we observe that 0 < )\1 < A. and then
0</\2 A — /\1</\ Also for p < 0,

SCIENTIFIC EMINENCE GROUP | www.scientificeminencegroup.com Volume 1 Issue 2
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(u(@) 7o () = (u(@) 7 [(w(@) o (@)

is decreasing in (mgy — 1, 00).
By the reverse Holder’s inequality (cf. [28]), we obtain

A=Ag—1 A -1

Y i Vo N ol ('R [ (D
B()\l,)\g)—/o (1+u>/\du—/0 (1_'_”))\ du

00, A—Aa—1 % 00 A1—1 %
> [/ v du} {/ v du}
0 (L+u) o (I +up

= Br(A— Ao, M) Bi (A, A — ). (18)

Since the constant factor

1 (T"BO = s k)
¥\ ap()

) Bi(A, A — \)

in (16) is the best value. compare with the constant factors in (16) and (17)
(for Ay = A1, Aa = A\y), we have

1 (Fn(%)B(A - AMQ)) % Bi(A, A — )

X aﬁ”—lf(%)
N ARAC N
N (m) B(Ai, A2),

namely,

B, Ae) < Br (A= Ag, o) B (A, A — Ay).
Hence, (18) keeps the form of equality. The necessary and sufficient condition
for taking an equal sign is that there exist constants A and B, such that they
are not both zero, and (cf. [2 ]) Aur27t = ByMt ae. in Ry, Assuming
that A # 0, we have u) 2" = A a.e. in R,. It follows that A— Ay —\; = 0,
and then A + Xy = A

This proves the theorem. [

Remark 3. For v € (0,1], A\, € (0, 'y> (0,N), mo € [\ — % +1,1), in
view of Remark 1, both uy(z) = 27, (z € (0,00);m¢ = 1) and us(z) = In" x
(x € (1,00);my = 2) satisty for using Theorem 1-3.

Corollary 1. Fori =0 in (16) we have the following reverse inequality:

amg
~dy
/n Z )+ ||y||5)

+ m=myo

( ()B(/\ /\2,/\2)

[/ Iyl " g1 (y)dy | . (19)
R

hSAL

|5 wmyra
[mzr:no (U(m))p(xl—l)_ﬂ

In particular, for Ay + Ay = A, we have
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(L)

- amg(y) # z
/Rn 2 () + T3~ (aﬁ”T(g)) B(Ar, %)

+ m=myo

X [Z (Sérf;;?@_pﬁ] [/R ||y||qﬁ(n_%)_”9q(y)dy] @)

m=mg +

Corollary 2. If A\ + Ay = A, then the constant factor

D()BO = A h)\ 7,

in (19) is the best value. On the other hand, if the same constant factor in

(19) is the best value, then for 0 < A — A; — Ag < |p|A1, we have A\; + Ay = .
Remark 4. Inequality (16) (resp. (17)) is an extended application of 19)

(resp. (20)).

Conclusion

In this paper, following the way of [21] and [22], by means of

1
(w(m) + |y #**)

with one partial sum is obtained in Theorem 1. The equiva-
lent statements of the best value related to several parameters
in the new inequality are given in Theorem 2 and Theorem 3.
Some particular results are deduced in Corollary 1 and Corol-

lary 2.
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