

World Journal of Advances in Applied Physics and Mathematical Theories

Open Access

japm@scientificeminencegroup.com

A New Multidimensional Half-Discrete Reverse Hardy-Hilbert's Inequality with One Partial Sum

Bicheng Yang

School of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. China

*Corresponding Author

Bicheng Yang, School of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. China, E-mail: bcyang818@163.com

Citation

Bicheng Yang (2025) A New Multidimensional Half-Discrete Reverse Hardy-Hilbert's Inequality with One Partial Sum. World J Adv Appl Phys Math Theo 1: 205

Publication Dates

Received date: September 16, 2025 Accepted date: October 01, 2025 Published date: October 11, 2025

Abstract

By means of the weight functions, the idea of introduced parameters and the techniques of real analysis, a multidimensional halfdiscrete reverse Hardy-Hilbert's inequality with one partial sum is obtained. The equivalent statements of the best value related to parameters are considered, and some corollaries are deduced.

Keywords: weight function; parameter; Beta function; partial sum; multidimensional half-discrete Hardy-Hilbert's inequality; reverse

Introduction

Assuming that p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $a_m, b_n \ge 0$, $0 < \sum_{m=1}^{\infty} a_m^p < \infty$ and $0 < \sum_{n=1}^{\infty} b_n^q < \infty$, we have the following Hardy-Hilbert's inequality with the best value $\frac{\pi}{\sin(\pi/p)}$ (cf [1], Theorem 315):

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{m+n} < \frac{\pi}{\sin(\frac{\pi}{p})} \left(\sum_{m=1}^{\infty} a_m^p \right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} b_n^q \right)^{\frac{1}{q}}. \tag{1}$$

Setting $f(x), g(y) \ge 0$, $0 < \int_0^\infty f^p(x) dx < \infty$ and $0 < \int_0^\infty g^q(y) dy < \infty$, we have the integral analogue of (1) with the same best value named in Hardy-Hilbert's integral inequality as follows (cf [1], Theorem 316):

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dx dy < \frac{\pi}{\sin(\frac{\pi}{p})} \left(\int_0^\infty f^p(x) dx \right)^{\frac{1}{p}} \left(\int_0^\infty g^q(y) dy \right)^{\frac{1}{q}}. \tag{2}$$

In 2006, by means of Euler-Maclaorin summation formula, Krnić et al. [2] gave an extension of (1) as follows:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{(m+n)^{\lambda}} < B(\lambda_1, \lambda_2) \left(\sum_{m=1}^{\infty} m^{p(1-\lambda_1)-1} a_m^p \right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} n^{q(1-\lambda_2)-1} b_n^q \right)^{\frac{1}{q}}.$$
 (3)

where, $\lambda_1, \lambda_2 \in (0, 2], \lambda_1 + \lambda_2 = \lambda \in (0, 4]$, the constant $B(\lambda_1, \lambda_2)$ is the best value, and

$$B(u,v) = \int_0^\infty \frac{t^{u-1}}{(1+t)^{u+v}} dt, u,v > 0$$
 (4)

is the Beta function. In 2019, by means of (3) and Abel's partial summation formula, Adiyasuren et al. [3] obtained an extended application of (3) involving two partial sums. In 2020, Mo et al. [4] gave an extension of (2) involving two upper limit functions. Inequalities (1)-(2) with their extensions played an important role in analysis and its applications (cf. [5]-[15]).

In 2016-2017, Hong et al. [16]-[17] considered several equivalent conditions of the extensions of (1) and (2) with a few parameters related to the best values. Some other results were provided by [18]-[20]. In 2023, Hong et al. [21] gave a more accurate multidimensional half-discrete Hilbert-type inequality involving one derivative function of m-order, and [22] gave an extended inequality with the same kernel involving one multiple upper limit function. Some dependent results were published by [23]-[27].

In this paper, following the way of [21] and [22], by using the weight functions, the idea of introduced $^{\mu}$ arameters and the techniques of real analysis. a multidimensional half-discrete reverse Hardy-Hilbert's inequality with the new kernel as $\frac{1}{(u(m)+||y||^{\alpha}_{\beta})^{\lambda+i}}$ $(\alpha, \lambda > 0, i \in \{0,1\})$ with one partial sum is obtained. The equivalent statements of the best value related to parameters are considered, and some corollaries are provided.

Some Lemmas

In what follows, we assume that

(H1). $p < 0 \ (0 < q < 1), \frac{1}{p} + \frac{1}{q} = 1, \alpha, \beta \in \mathbf{R}_{+} := (0, \infty), \ \lambda > 0, \ \lambda_{1}, \lambda_{2} \in (0, \lambda), m_{0}, n \in \mathbf{N} := \{1, 2, \cdots\}, u(x), u'(x) > 0, u''(x) \leq 0, \text{ there exists a constant } \eta_{0} < 1, \text{ such that } (u(x))^{\lambda_{1} - \eta_{0}} u'(x) \text{ is decreasing in } x \in (m_{0} - 1, \infty), \text{ with } u(\infty) = \infty, \ \widehat{\lambda}_{1} = \frac{\lambda - \lambda_{2}}{p} + \frac{\lambda_{1}}{q}, \ \widehat{\lambda}_{2} = \frac{\lambda - \lambda_{1}}{q} + \frac{\lambda_{2}}{p}, \ a_{k} \geq 0, \ A_{m}^{(0)} := a_{m}, A_{m}^{(1)} := \sum_{k=m_{0}}^{m} a_{k} \ (k, m \in \mathbf{N}_{m_{0}} := \{m_{0}, m_{0} + 1, \cdots\}), \text{ satisfying } A_{m}^{(1)} = o(e^{tu(m)}) \ (t > 0; m \to \infty), \text{ and}$

$$0 < \sum_{m=m_0}^{\infty} \frac{(u'(m))^{1-p}}{(u(m))^{p(\widehat{\lambda}_1 - 1) + 1}} a_m^p < \infty.$$

For $g(y) \ge 0$, $y = (y_1, \dots, y_n) \in \mathbf{R}_+^n$, $||y||_{\beta} := (\sum_{i=1}^n y_i^{\beta})^{\frac{1}{\beta}}$, we still have

$$0 < \int_{\mathbf{R}_+^n} ||y||_{\beta}^{q(n-\alpha\widehat{\lambda}_2)-n} g^q(y) dy < \infty.$$

Remark 1. (i) For $\gamma \in (0,1], m_0 = 1, u(x) = x^{\gamma}, x \in (0,\infty), \lambda_1 \in (0,\frac{1}{\gamma}), u(x) > 0, u'(x) = \gamma x^{\gamma-1} > 0, u''(x) = \gamma(\gamma-1)x^{\gamma-2} < 0, u(\infty) = \lim_{x\to\infty} x^{\gamma} = \infty, \ \eta_0 \in [\lambda_1 - \frac{1}{\gamma} + 1, 1), (u(x))^{\lambda_1 - \eta_0} u'(x) = \gamma x^{(\lambda_1 - \eta_0 + 1)\gamma - 1} \text{ is decreasing in } x \in (0,\infty).$

(ii) For $\gamma \in (0,1]$, $m_0 = 2$, $u(x) = \ln^{\gamma} x$, $x \in (1,\infty)$, $\lambda_1 \in (0,\frac{1}{\gamma})$, u(x) > 0, $u'(x) = \frac{\gamma}{x} \ln^{\gamma-1} x > 0$, u''(x) < 0, $u(\infty) = \lim_{x \to \infty} \ln^{\gamma} x = \infty$, $\eta_0 \in [\lambda_1 - \frac{1}{\gamma} + 1, 1)$, $(u(x))^{\lambda_1 - \eta_0} u'(x) = \frac{\gamma}{x} \ln^{(\lambda_1 - \eta_0 + 1)\gamma - 1} x$ is decreasing in $x \in (1, \infty)$.

If $M > 0, \psi(u)$ (u > 0) is a nonnegative measurable function, then we have the following transfer formula (cf. [5], (9.1.5)):

$$\int \cdots \int_{\{y \in \mathbf{R}_{+}^{n}; 0 < \sum_{i=1}^{n} (\frac{y_{i}}{M})^{\beta} \leq 1\}} \psi(\sum_{i=1}^{n} (\frac{y_{i}}{M})^{\beta}) dy_{1} \cdots dy_{n}$$

$$= \frac{M^{n} \Gamma^{n}(\frac{1}{\beta})}{\beta^{n} \Gamma(\frac{n}{\beta})} \int_{0}^{1} \psi(u) u^{\frac{n}{\beta}-1} du. \tag{5}$$

(i) For $||y||_{\beta} = M[\sum_{i=1}^{n} (\frac{y_i}{M})^{\beta}]^{\frac{1}{\beta}}, \psi(u) = \varphi(Mu^{\frac{1}{\beta}}), \text{ by (5), setting } v =$

 $Mu^{\frac{1}{\beta}}$, we have

$$\int_{\mathbf{R}_{+}^{n}} \varphi(||y||_{\beta}) dy$$

$$= \lim_{M \to \infty} \int \cdots \int_{\{y \in \mathbf{R}_{+}^{n}; 0 < \sum_{i=1}^{n} (\frac{y_{i}}{M})^{\beta} \le 1\}} \varphi(M[\sum_{i=1}^{n} (\frac{y_{i}}{M})^{\beta}]^{\frac{1}{\beta}}) dy_{1} \cdots dy_{n}$$

$$= \lim_{M \to \infty} \frac{M^{n} \Gamma^{n}(\frac{1}{\beta})}{\beta^{n} \Gamma(\frac{n}{\beta})} \int_{0}^{1} \varphi(Mu^{\frac{1}{\beta}}) u^{\frac{n}{\beta} - 1} du$$

$$= \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1} \Gamma(\frac{n}{\beta})} \int_{0}^{\infty} \varphi(v) v^{n-1} dv. \tag{6}$$

(ii) If $\varphi(||y||_{\beta}) = \varphi(Mu^{\frac{1}{\beta}}) = 0$, for $u = \sum_{i=1}^{n} (\frac{y_i}{M})^{\beta} < (\frac{b}{M})^{\beta}$ (b > 0), i.e. $||y||_{\beta} = Mu^{\frac{1}{\beta}} < b$, then by (6), it follows that

$$\int_{\{y \in \mathbf{R}_{+}^{n}; ||y||_{\beta} \ge b\}} \varphi(||y||_{\beta}) dy = \lim_{M \to \infty} \frac{M^{n} \Gamma^{n}(\frac{1}{\beta})}{\beta^{n} \Gamma(\frac{n}{\beta})} \int_{(\frac{b}{M})^{\beta}}^{1} \varphi(M u^{\frac{1}{\beta}}) u^{\frac{n}{\beta} - 1} du$$

$$= \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1} \Gamma(\frac{n}{\beta})} \int_{b}^{\infty} \varphi(v) v^{n-1} dv. \tag{7}$$

Remark 2. For $b = 1, c \in \mathbb{R}_+, \varphi(v) = v^{-\alpha c - n}$ in (7), we have

$$\int_{\{y \in \mathbf{R}_{+:}^{n} ||y||_{\beta} \ge 1\}} ||y||_{\beta}^{-\alpha c - n} dy = \int_{1}^{\infty} v^{-\alpha c - n} v^{n - 1} dv = \frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha c \beta^{n - 1} \Gamma(\frac{n}{\beta})}.$$
 (8)

Lemma 1 Suppose that $s \in (0, \infty), s_1, s_2 \in (0, s)$, there exists a constant $\eta_0 < 1$, such that $(u(x))^{s_1 - \eta_0} u'(x)$ is decreasing in $(m_0 - 1, \infty)$. We define the following weight functions:

$$\omega_s(s_1, y) := ||y||_{\beta}^{\alpha(s-s_1)} \sum_{m=m_0}^{\infty} \frac{(u(m))^{s_1-1} u'(m)}{(u(m)+||y||_{\beta}^{\alpha})^s} \ (y \in \mathbf{R}_+^n), \tag{9}$$

$$\varpi_s(s_2, m) : = (u(m))^{s-s_2} \int_{\mathbf{R}_+^n} \frac{||y||_{\beta}^{\alpha s_2 - n} dy}{(u(m) + ||y||_{\beta}^{\alpha})^s} \ (m \in \mathbf{N}_{m_0}).$$
 (10)

The following inequality and expression are value:

$$\omega_s(s_1, y) < B(s_1, s - s_1) \ (y \in \mathbf{R}^n_+),$$
 (11)

$$\varpi_s(s_2, m) = \frac{\Gamma^n(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} B(s - s_2, s_2) \quad (m \in \mathbf{N}_{m_0}).$$
 (12)

Proof. Since $u'(x) > 0, \eta_0 < 1$, we observe that

$$(u(x))^{s_1-1}u'(x) = (u(x))^{\eta_0-1}[(u(x))^{s_1-\eta_0}u'(x)]$$

is still decreasing in $(m_0 - 1, \infty)$. In view of the decreasingness property of series, setting $v = \frac{u(x)}{||y||_{\beta}^{\alpha}}$, we find

$$\omega_s(s_1, y) < ||y||_{\beta}^{\alpha(s-s_1)} \int_{m_0-1}^{\infty} \frac{(u(x))^{s_1-1} u'(x)}{(u(x)+||y||_{\beta}^{\alpha})^s} dx$$

$$\leq \int_0^{\infty} \frac{v^{s_1-1}}{(v+1)^s} dv = B(s_1, s-s_1),$$

and then we have (11). In (6), for
$$\varphi(v) = \frac{v^{\alpha s_2 - n}}{(u(m) + v^{\alpha})^s}$$
, setting $t = \frac{v^{\alpha}}{u(m)}$, we have

$$\varpi_{s}(s_{2}, m) = \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac{n}{\beta})} (u(m))^{s-s_{2}} \int_{0}^{\infty} \frac{v^{\alpha s_{2}-n}v^{n-1}}{(u(m)+v^{\alpha})^{s}} dv$$

$$= \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac{n}{\beta})} (u(m))^{s-s_{2}} \int_{0}^{\infty} \frac{v^{\alpha s_{2}-1}}{(u(m)+v^{\alpha})^{s}} dv$$

$$= \frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})} \int_{0}^{\infty} \frac{t^{s_{2}-1}}{(1+t)^{s}} dt$$

$$= \frac{\Gamma^n(\frac{1}{\beta})B(s_2, s - s_2)}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})} = \frac{\Gamma^n(\frac{1}{\beta})B(s - s_2, s_2)}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})},$$

and then we have (12).

This proves the lemma. \square

Lemma 2. With regards to the assumption H1, for t > 0, we have the following inequality:

$$\sum_{m=m_0}^{\infty} e^{-tu(m)} (u'(m))^i A_m^{(i)} \ge t^{-i} \sum_{m=m_0}^{\infty} e^{-tu(m)} a_m \ (i \in \{0, 1\}). \tag{13}$$

Proof. For i = 0, since $a_m = A_m^{(0)}$, (13) keeps the form of an equality; for i = 1, since $A_m^{(1)}e^{-tu(m)} = o(1)$ $(t > 0; m \to \infty)$, by Abel's partial summation

formula, we find

$$\sum_{m=m_0}^{\infty} e^{-tu(m)} a_m = \lim_{m \to \infty} A_m^{(1)} e^{-tu(m)} + \sum_{m=m_0}^{\infty} A_m^{(1)} (e^{-tu(m)} - e^{-tu(m+1)})$$

$$= \sum_{m=m_0}^{\infty} A_m^{(1)} (e^{-tu(m)} - e^{-tu(m+1)}). \tag{14}$$

We set function $f(x) := e^{-tu(x)}, x \in (m_0 - 1, \infty)$. Then we find

$$f'(x) := -te^{-tu(x)}u'(x) = -th(x),$$

where, $h(x) = e^{-tu(x)}u'(x)$ is decreasing in (m_0-1, ∞) , in view of u(x), u'(x) > 0 and $u''(x) \le 0$. By (14) and the differentiation mid-value theorem, there exists a $\theta_m \in (0, 1)$, such that

$$\sum_{m=m_0}^{\infty} e^{-tu(m)} a_m = -\sum_{m=m_0}^{\infty} A_m^{(1)} [f(m+1) - f(m)]$$

$$= -\sum_{m=m_0}^{\infty} A_m^{(1)} f'(m+\theta_m) = t \sum_{m=m_0}^{\infty} A_m^{(1)} h(m+\theta_m)$$

$$\leq t \sum_{m=m_0}^{\infty} A_m^{(1)} h(m) = t \sum_{m=m_0}^{\infty} e^{-tu(m)} u'(m) A_m^{(1)},$$

and then we have (13).

This proves the lemma. \square

Lemma 3. With regards to the assumption H1, we have the following inequality:

$$I_{\lambda} : = \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{a_{m}g(y)}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} dy$$

$$> \left(\frac{\Gamma^{n}(\frac{1}{\beta})B(\lambda - \lambda_{2}, \lambda_{2})}{\alpha \beta^{n-1}\Gamma(\frac{n}{\beta})}\right)^{\frac{1}{p}} B^{\frac{1}{q}}(\lambda_{1}, \lambda - \lambda_{1})$$

$$\times \left[\sum_{m=m_0}^{\infty} \frac{(u'(m))^{1-p} a_m^p}{(u(m))^{p(\widehat{\lambda}_1 - 1) + 1}} \right]^{\frac{1}{p}} \left[\int_{\mathbf{R}_+^n} ||y||_{\beta}^{q(n - \alpha \widehat{\lambda}_2) - n} g^q(y) dy \right]^{\frac{1}{q}}. \quad (15)$$

der's inequality (cf. [28]), we have

$$\begin{split} I_{\lambda} &= \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{1}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} \left[\frac{(u(m))^{(1-\lambda_{1})/q} a_{m}}{||y||_{\beta}^{(n-\alpha\lambda_{2})/p} (u'(m))^{1/q}} \right] \\ &\times \left[\frac{||y||_{\beta}^{(n-\alpha\lambda_{2})/p} g(y)}{(u(m))^{(1-\lambda_{1})/q} (u'(m))^{-1/q}} \right] dy \\ &\geq \left\{ \sum_{m=m_{0}}^{\infty} \int_{\mathbf{R}_{+}^{n}} \frac{1}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} \frac{(u(m)^{(1-\lambda_{1})(p-1)} a_{m}^{p}}{||y||_{\beta}^{n-\alpha\lambda_{2}} (u'(m))^{p-1}} dy \right\}^{\frac{1}{p}} \\ &\times \left\{ \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{1}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} \frac{||y||_{\beta}^{(n-\alpha\lambda_{2})(q-1)} g^{q}(y)}{(u(m))^{1-\lambda_{1}} (u'(m))^{-1}} dy \right\}^{\frac{1}{q}} \\ &= \left\{ \sum_{m=m_{0}}^{\infty} \left[(u(m))^{\lambda-\lambda_{2}} \int_{\mathbf{R}_{+}^{n}} \frac{||y||_{\beta}^{\alpha\lambda_{2}-n} dy}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} \frac{(u'(m))^{1-p} a_{m}^{p}}{(u(m))^{p(\lambda_{1}-1)+1}} \right\}^{\frac{1}{p}} \\ &\times \left\{ \int_{\mathbf{R}_{+}^{n}} \left[||y||_{\beta}^{\alpha(\lambda-\lambda_{1})} \sum_{m=m_{0}}^{\infty} \frac{(u(m)^{-1} u'(m)}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} \right] ||y||_{\beta}^{q(n-\alpha\lambda_{2})-n} g^{q}(y) dy \right\}^{\frac{1}{q}} \\ &= \left[\sum_{m=m_{0}}^{\infty} \varpi_{\lambda}(\lambda_{2}, m) \frac{(u'(m))^{1-p} a_{m}^{p}}{(u(m))^{p(\lambda_{1}-1)+1}} \right]^{\frac{1}{p}} \\ &\times \left[\int_{\mathbf{R}_{+}^{n}} \omega_{\lambda}(\lambda_{1}, y) ||y||_{\beta}^{q(n-\alpha\lambda_{2})-n} g^{q}(y) dy \right]^{\frac{1}{q}}. \end{split}$$

By (11) and (12), for p < 0 (0 < q < 1), $s = \lambda > 0$, $s_1 = \lambda_1 \in (0, \lambda)$, $s_2 = \lambda_2 \in (0, \lambda)$, $(u(x))^{s_1 - \eta_0} u'(x) = (u(x))^{\lambda_1 - \eta_0} u'(x)$ ($\eta_0 < 1$) is decreasing in $(m_0 - 1, \infty)$, in view of H1, we have (15).

This proves the lemma. \square

Main Result

Theorem 1. With regards to the assumption H1, for $i \in \{0, 1\}$, we have the following multidimensional half-discrete reverse Hardy-Hilbert's inequality with one partial sum:

$$I : = \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{i} A_{m}^{(i)} g(y)}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda+i}} dy e$$

$$> \frac{1}{\lambda^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta}) B(\lambda - \lambda_{2}, \lambda_{2})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B^{\frac{1}{q}}(\lambda_{1}, \lambda - \lambda_{1})$$

$$\times \left[\sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{1-p} a_{m}^{p}}{(u(m))^{p(\widehat{\lambda}_{1}-1)+1}} \right]^{\frac{1}{p}} \left[\int_{\mathbf{R}_{+}^{n}} ||y||_{\beta}^{q(n-\alpha\widehat{\lambda}_{2})-n} g^{q}(y) dy \right]^{\frac{1}{q}}. \quad (16)$$

In particular, for $\lambda = \lambda_1 + \lambda_2$, we have

$$0 < \sum_{m=m_0}^{\infty} \frac{(u'(m))^{1-p}}{(u(m))^{p(\lambda_1-1)+1}} a_m^p < \infty,$$

$$0 < \int_{\mathbf{R}_{\perp}^n} ||y||_{\beta}^{q(n-\alpha\lambda_2)-n} g^q(y) dy < \infty,$$

and the following inequality:

$$\int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{i}}{(u(m)+||y||_{\beta}^{\alpha})^{\lambda+i}} A_{m}^{(i)} g(y) dy$$

$$> \frac{1}{\lambda^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B(\lambda_{1}, \lambda_{2})$$

$$\times \left[\sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{1-p} a_{m}^{p}}{(u(m))^{p(\lambda_{1}-1)+1}} \right]^{\frac{1}{p}} \left[\int_{\mathbf{R}_{+}^{n}} ||y||_{\beta}^{q(n-\alpha\lambda_{2})-n} g^{q}(y) dy \right]^{\frac{1}{q}} . \quad (17)^{n} d^{n} d^{n}$$

Proof. By the following expression of the Gamma function:

$$\frac{1}{(u(m)+||y||_{\beta}^{\alpha})^{\lambda+i}}=\frac{1}{\Gamma(\lambda+i)}\int_{0}^{\infty}t^{\lambda+i-1}e^{-(u(m)+||y||_{\beta}^{\alpha})t}dt,$$

(13) and Lebesgue term by term theorem (cf. [29]), we have

$$I = \frac{1}{\Gamma(\lambda+i)} \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} (u'(m))^{i} A_{m}^{(i)} g(y) \left[\int_{0}^{\infty} t^{\lambda+i-1} e^{-(u(m)+||y||_{\beta}^{\alpha})t} dt \right] dy$$

$$= \frac{1}{\Gamma(\lambda+i)} \int_{0}^{\infty} t^{\lambda+i-1} \left(\sum_{m=m_{0}}^{\infty} e^{-xu(m)} (u'(m))^{i} A_{m}^{(i)} \right)$$

$$\times \left(\int_{\mathbf{R}_{+}^{n}} e^{-||y||_{\beta}^{\alpha}t} g(y) dy \right) dt$$

$$\geq \frac{1}{\Gamma(\lambda+i)} \int_{0}^{\infty} t^{\lambda+i-1} \left(t^{-i} \sum_{m=m_{0}}^{\infty} e^{-xu(m)} a_{m} \right) \left(\int_{\mathbf{R}_{+}^{n}} e^{-||y||_{\beta}^{\alpha}t} g(y) dy \right) dt$$

$$= \frac{1}{\Gamma(\lambda+i)} \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} a_{m} g(y) \left[\int_{0}^{\infty} t^{\lambda-1} e^{-(u(m)+||y||_{\beta}^{\alpha})t} dt \right] dy$$

$$= \frac{\Gamma(\lambda)}{\Gamma(\lambda+i)} \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{a_{m} g(y)}{(u(m)+||y||_{\beta}^{\alpha})^{\lambda}} dy = \frac{I_{\lambda}}{\lambda^{i}}.$$

Then by (15), we have (16). For $\lambda = \lambda_1 + \lambda_2$ in (16), we have (17).

This proves the theorem. \square

Theorem 2. With regards to the assumption H1, if $i \in \{0, 1\}$, $\lambda_1 + \lambda_2 = \lambda$, then the constant factor

$$\frac{1}{\lambda^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta}) B(\lambda - \lambda_{2}, \lambda_{2})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B^{\frac{1}{q}}(\lambda_{1}, \lambda - \lambda_{1})$$

in (16) is the best value.

Proof. We need to prove that the constant factor in (17) is the best value for $i \in \{0, 1\}$. For any $0 < \varepsilon < \min\{|p|\lambda_2, |p|(1 - \eta_0), q\lambda_2\}$, we set

$$\widetilde{A}_{m}^{(0)} = \widetilde{a}_{m} := (u(m))^{\lambda_{1} - \frac{\varepsilon}{p} - 1} u'(m),
\widetilde{A}_{m}^{(1)} = \sum_{k=m_{0}}^{m} \widetilde{a}_{k} = \sum_{k=m_{0}}^{m} (u(k))^{(\lambda_{1} - \frac{\varepsilon}{p}) - 1} u'(k), m \in \mathbf{N}_{m_{0}},
\widetilde{g}(y) : = \begin{cases} 0, ||y||_{\beta} < 1 \\ ||y||_{\beta}^{\alpha(\lambda_{2} - \frac{\varepsilon}{q}) - n}, ||y||_{\beta} \ge 1 \end{cases}.$$

Since $\varepsilon < |p|(1-\eta_0)$, both

$$(u(x))^{(\lambda_1 - \frac{\varepsilon}{p}) - 1} u'(x) (= (u(x))^{\frac{\varepsilon}{|p|} + \eta_0 - 1} [(u(x))^{\lambda_1 - \eta_0} u'(x)])$$

and $(u(x))^{-\varepsilon-1}u'(x)$ (= $(u(x))^{-\lambda_1-\varepsilon+(\eta_0-1)}[(u(x))^{\lambda_1-\eta_0}u'(x)]$) are strictly decreasing in (m_0-1,∞) , we find

$$\widetilde{A}_{m}^{(1)} < \int_{m_{0}-1}^{m} (u(x))^{(\lambda_{1}-\frac{\varepsilon}{p})-1} u'(x) dx \le \frac{1}{\lambda_{1}-\frac{\varepsilon}{p}} (u(m))^{\lambda_{1}-\frac{\varepsilon}{p}},$$

and then for $i \in \{0,1\}$, it follows that

$$\widetilde{A}_{m}^{(i)} \leq \frac{(u'(m))^{1-i}}{(\lambda_{1} - \frac{\varepsilon}{p})^{i}} (u(m))^{\lambda_{1} - \frac{\varepsilon}{p} + i - 1} \ (m \in \mathbf{N}_{m_{0}}), \text{ and}
\sum_{m=m_{0}}^{\infty} \frac{u'(m)}{(u(m))^{\varepsilon+1}} = \frac{u'(m_{0})}{(u(m_{0}))^{\varepsilon+1}} + \sum_{m=m_{0}+1}^{\infty} \frac{u'(m)}{(u(m))^{\varepsilon+1}}
< \frac{u'(m_{0})}{(u(m_{0}))^{\varepsilon+1}} + \int_{m_{0}}^{\infty} \frac{u'(x)}{(u(x))^{\varepsilon+1}} dx
= b + \frac{1}{\varepsilon(u(m_{0}))^{\varepsilon}} \ (b := \frac{u'(m_{0})}{(u(m_{0}))^{\varepsilon+1}}).$$

If there exists a positive constant M, with

$$M \ge \frac{1}{\lambda^i} \left(\frac{\Gamma^n(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B(\lambda_1, \lambda_2),$$

such that (17) is valid when we replace the constant factor by M, then in particular, by (8) (for $c = \varepsilon$), we have

$$\widetilde{I} : = \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{i} \widetilde{A}_{m}^{(i)} \widetilde{g}(y)}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda+i}} dy$$

$$> M \left[\sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{1-p} \widetilde{a}_{m}^{p}}{(u(m))^{p(\lambda_{1}-1)+1}} \right]^{\frac{1}{p}} \left[\int_{\mathbf{R}_{+}^{n}} ||y||_{\beta}^{q(n-\alpha\lambda_{2})-n} \widetilde{g}^{q}(y) dy \right]^{\frac{1}{q}}$$

$$= M \left(\sum_{m=m_{0}}^{\infty} \frac{u'(m)}{(u(m))^{\varepsilon+1}} \right)^{\frac{1}{p}} \left(\int_{\{y \in \mathbf{R}_{+}^{n}; ||y||_{\beta} \geq 1\}} ||y||_{\beta}^{-\alpha\varepsilon-n} dy \right)^{\frac{1}{q}}$$

$$> \frac{M}{\varepsilon} \left[\varepsilon b + \frac{1}{(u(m_{0}))^{\varepsilon}} \right]^{\frac{1}{p}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})} \right)^{\frac{1}{q}}.$$

By (6), we have

$$\widetilde{I} \leq \frac{1}{(\lambda_{1} - \frac{\varepsilon}{n})^{i}} \sum_{m=-\infty}^{\infty} (u(m))^{\lambda_{1} - \frac{\varepsilon}{p} + i - 1} u'(m) \int_{y \in \mathbf{R}_{+}^{n};} \frac{||y||_{\beta}^{\alpha(\lambda_{2} - \frac{\varepsilon}{q}) - n} dy}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda + i}}$$

$$- \overline{\beta^{n-1} \Gamma(\frac{n}{\beta})} (\lambda_{1} - \frac{\varepsilon}{p})^{\overline{i}}$$

$$\times \sum_{m=m_{0}}^{\infty} (u(m))^{\lambda_{1} - \frac{\varepsilon}{p} + i - 1} u'(m) \int_{0}^{\infty} \frac{v^{\alpha(\lambda_{2} - \frac{\varepsilon}{q}) - 1} dv}{(u(m) + v^{\alpha})^{\lambda + i}}$$

$$< \frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \frac{1}{(\lambda_{1} - \frac{\varepsilon}{p})^{i}} \sum_{m=m_{0}}^{\infty} \frac{u'(m)}{(u(m))^{\varepsilon + 1}} \int_{0}^{\infty} \frac{t^{\lambda_{2} - \frac{\varepsilon}{q} - 1} dt}{(1 + t)^{\lambda + i}}$$

$$= \frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \frac{B(\lambda_{1} + i + \frac{\varepsilon}{q}, \lambda_{2} - \frac{\varepsilon}{q})}{(\lambda_{1} - \frac{\varepsilon}{p})^{i}} \left[b + \frac{1}{\varepsilon(u(m_{0}))^{\varepsilon}}\right]$$

Based on the above results, we have the following inequality

$$\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})} \frac{B(\lambda_{1} + i + \frac{\varepsilon}{q}, \lambda_{2} - \frac{\varepsilon}{q})}{(\lambda_{1} - \frac{\varepsilon}{p})^{i}} \left[\varepsilon b + \frac{1}{(u(m_{0}))^{\varepsilon}}\right]$$

$$> \varepsilon \widetilde{I} > M \left[\varepsilon b + \frac{1}{(u(m_{0}))^{\varepsilon}}\right]^{\frac{1}{p}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})}\right)^{\frac{1}{q}}$$

For $\varepsilon \to 0^+$, in view of the continuity of the Beta function, we have

$$\frac{B(\lambda_1 + i, \lambda_2)\Gamma^n(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})\lambda_1^i} \ge M\left(\frac{\Gamma^n(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})}\right)^{\frac{1}{q}}.$$

Since $i \in (0,1]$, $\lambda^i B(\lambda_1 + i, \lambda_2) = \lambda_1^i B(\lambda_1, \lambda_2)$, it follows that

$$\frac{1}{\lambda^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B(\lambda_{1}, \lambda_{2})$$

$$= \frac{1}{\lambda_{1}^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B(\lambda_{1} + i, \lambda_{2}) \ge M.$$

Therefore,

$$M = \frac{1}{\lambda^i} \left(\frac{\Gamma^n(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B(\lambda_1, \lambda_2)$$

is the best value in (17) (namely, for $\lambda_1 + \lambda_2 = \lambda$ in (16)).

This proves the theorem. \square

Theorem 3. With regards to the assumption H1, if the constant factor in (16) is the best value, then for $0 \le \lambda - \lambda_1 - \lambda_2 < |p|\lambda_1$, we have $\lambda_1 + \lambda_2 = \lambda$. Proof. For $\widehat{\lambda}_1 = \frac{\lambda - \lambda_1 - \lambda_2}{p} + \lambda_1$, $\widehat{\lambda}_2 = \frac{\lambda - \lambda_1}{q} + \frac{\lambda_2}{p}$, we find $\widehat{\lambda}_1 + \widehat{\lambda}_2 = \lambda$. For $0 \le \lambda - \lambda_1 - \lambda_2 < -p\lambda_1$, we observe that $0 < \widehat{\lambda}_1 < \lambda$. and then $0 < \widehat{\lambda}_2 = \lambda - \widehat{\lambda}_1 < \lambda$. Also for p < 0,

$$(u(x))^{\hat{\lambda}_1 - \eta_0} u'(x) = (u(x))^{\frac{\lambda - \lambda_1 - \lambda_2}{p}} [(u(x))^{\lambda_1 - \eta_0} u'(x)]$$

is decreasing in $(m_0 - 1, \infty)$.

By the reverse Hölder's inequality (cf. [28]), we obtain

$$B(\widehat{\lambda}_{1}, \widehat{\lambda}_{2}) = \int_{0}^{\infty} \frac{u^{\widehat{\lambda}_{1}-1}}{(1+u)^{\lambda}} du = \int_{0}^{\infty} \frac{(u^{\frac{\lambda-\lambda_{2}-1}{p}})(u^{\frac{\lambda_{1}-1}{q}})}{(1+u)^{\lambda}} du$$

$$\geq \left[\int_{0}^{\infty} \frac{u^{\lambda-\lambda_{2}-1}}{(1+u)^{\lambda}} du \right]^{\frac{1}{p}} \left[\int_{0}^{\infty} \frac{u^{\lambda_{1}-1}}{(1+u)^{\lambda}} du \right]^{\frac{1}{q}}$$

$$= B^{\frac{1}{p}}(\lambda - \lambda_{2}, \lambda_{2}) B^{\frac{1}{q}}(\lambda_{1}, \lambda - \lambda_{1}). \tag{18}$$

Since the constant factor

$$\frac{1}{\lambda^i} \left(\frac{\Gamma^n(\frac{1}{\beta}) B(\lambda - \lambda_2, \lambda_2)}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B^{\frac{1}{q}}(\lambda_1, \lambda - \lambda_1)$$

in (16) is the best value. compare with the constant factors in (16) and (17) (for $\lambda_1 = \widehat{\lambda}_1, \lambda_2 = \widehat{\lambda}_2$), we have

$$\frac{1}{\lambda^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})B(\lambda - \lambda_{2}, \lambda_{2})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B^{\frac{1}{q}}(\lambda_{1}, \lambda - \lambda_{1})$$

$$\geq \frac{1}{\lambda^{i}} \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha \beta^{n-1} \Gamma(\frac{n}{\beta})} \right)^{\frac{1}{p}} B(\widehat{\lambda}_{1}, \widehat{\lambda}_{2}),$$

namely,

$$B(\widehat{\lambda}_1, \widehat{\lambda}_2) \le B^{\frac{1}{p}}(\lambda - \lambda_2, \lambda_2) B^{\frac{1}{q}}(\lambda_1, \lambda - \lambda_1).$$

Hence, (18) keeps the form of equality. The necessary and sufficient condition for taking an equal sign is that there exist constants A and B, such that they are not both zero, and (cf. [28]) $Au^{\lambda-\lambda_2-1}=Bu^{\lambda_1-1}$ a.e. in \mathbf{R}_+ . Assuming that $A\neq 0$, we have $u^{\lambda-\lambda_2-\lambda_1}=\frac{B}{A}$ a.e. in \mathbf{R}_+ . It follows that $\lambda-\lambda_2-\lambda_1=0$, and then $\lambda_1+\lambda_2=\lambda$.

This proves the theorem. \square

Remark 3. For $\gamma \in (0,1], \lambda_1 \in (0,\frac{1}{\gamma}) \cap (0,\lambda), \ \eta_0 \in [\lambda_1 - \frac{1}{\gamma} + 1,1), \ \text{in}$ view of Remark 1, both $u_1(x) = x^{\gamma}, \ (x \in (0,\infty); m_0 = 1) \ \text{and} \ u_2(x) = \ln^{\gamma} x$ $(x \in (1,\infty); m_0 = 2)$ satisfy for using Theorem 1-3.

Corollary 1. For i = 0 in (16), we have the following reverse inequality:

$$I : = \int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{a_{m}g(y)}{(u(m) + ||y||_{\beta}^{\alpha})^{\lambda}} dy$$

$$> \left(\frac{\Gamma^{n}(\frac{1}{\beta})B(\lambda - \lambda_{2}, \lambda_{2})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})}\right)^{\frac{1}{p}} B^{\frac{1}{q}}(\lambda_{1}, \lambda - \lambda_{1})$$

$$\times \left[\sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{1-p}a_{m}^{p}}{(u(m))^{p(\widehat{\lambda}_{1}-1)+1}}\right]^{\frac{1}{p}} \left[\int_{\mathbf{R}_{+}^{n}} ||y||_{\beta}^{q(n-\alpha\widehat{\lambda}_{2})-n} g^{q}(y) dy\right]^{\frac{1}{q}}. (19)$$

In particular, for $\lambda_1 + \lambda_2 = \lambda$, we have

$$\int_{\mathbf{R}_{+}^{n}} \sum_{m=m_{0}}^{\infty} \frac{a_{m}g(y)}{(u(m)+||y||_{\beta}^{\alpha})^{\lambda}} dy > \left(\frac{\Gamma^{n}(\frac{1}{\beta})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})}\right)^{\frac{1}{p}} B(\lambda_{1},\lambda_{2})
\times \left[\sum_{m=m_{0}}^{\infty} \frac{(u'(m))^{1-p}a_{m}^{p}}{(u(m))^{p(\lambda_{1}-1)+1}}\right]^{\frac{1}{p}} \left[\int_{\mathbf{R}_{+}^{n}} ||y||_{\beta}^{q(n-\alpha\lambda_{2})-n} g^{q}(y) dy\right]^{\frac{1}{q}}.$$
(20)

Corollary 2. If $\lambda_1 + \lambda_2 = \lambda$, then the constant factor

$$\left(\frac{\Gamma^{n}(\frac{1}{\beta})B(\lambda-\lambda_{2},\lambda_{2})}{\alpha\beta^{n-1}\Gamma(\frac{n}{\beta})}\right)^{\frac{1}{p}}B^{\frac{1}{q}}(\lambda_{1},\lambda-\lambda_{1})$$

in (19) is the best value. On the other hand, if the same constant factor in (19) is the best value, then for $0 \le \lambda - \lambda_1 - \lambda_2 < |p|\lambda_1$, we have $\lambda_1 + \lambda_2 = \lambda$.

Remark 4. Inequality (16) (resp. (17)) is an extended application of 19) (resp. (20)).

Conclusion

In this paper, following the way of [21] and [22], by means of

the weight functions, the idea of introduced parameters, the techniques of real analysis and Abel's partial summation formula, a multidimensional half-discrete reverse Hardy-Hilbert's inequality with the new kernel as

$$\frac{1}{\left(u(m) + \|y\|^{\frac{\alpha}{\beta}\lambda + i}\right)} \left(\alpha, \beta, \lambda > 0, i \in \{0, 1\}\right)$$

with one partial sum is obtained in Theorem 1. The equivalent statements of the best value related to several parameters in the new inequality are given in Theorem 2 and Theorem 3. Some particular results are deduced in Corollary 1 and Corollary 2.

Acknowledgement

The authors thank the referee for his useful propose to re-

form the paper.

Funding information

This work was supported by the National Natural Science Foundation (No.12471176), and the Key Research Platforms and Projects of Universities in Guangdong Province-Special Projects in Key Fields (No.2023ZDZX4042). We are grateful for this help.

References

- 1. GH Hardy, JE Littlewood, G Polya (1934) Inequalities, Cambridge University Press, Cambridge.
- 2. M Krni'c, J Pe cari'c (2006) Extension of Hilbert's inequality, J Math Anal Appl, 324: 150 60.
- 3. V Adiyasuren, T Batbold, EA Azar (2019) A new discrete Hilbert-type inequality involving partial sums, Journal of Inequalities and Applications. 2019: 127.
- 4. HM Mo, BC Yang (2020) on a new Hilbert-type integral involving the upper limit functions, Journal of Inequalities and Applications. 2020:5.
- 5. BC Yang (2009) The Norm of Operator and Hilbert-type Inequality, Science Press, Beijing, China, 2009.
- 6. M Krni'c, J Pe'cari'c (2005) General Hilbert's and Hardy's inequalities, Mathematical Inequalities & Applications. 8: 29–51.
- 7. I Peri'c, P Vukovi'c (2011) Multiple Hilbert's type inequalities with a homogeneous kernel, Banach Journal of Mathematical Analysis. 5: 33–43.
- 8. QL Huang (2015) A new extension of Hardy-Hilbert-type inequality, Journal of Inequalities and Applications. 2015: 397.
- 9. B He (2015) A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. Journal of Mathematical Analysis and Applications. 431: 902–90.
- 10. JS Xu, (2007) Hardy-Hilbert's inequalities with two parameters, Adv. Math, 36: 63–76.
- 11. ZT Xie, Z Zeng, YF Sun (2013) A new Hilbert-type inequality with the homogeneous kernel of degree -2, Advances and Applications in Mathematical Sciences. 12: 391–401.
- 12. Z Zeng, K Raja Rama Gandhi, ZT Xie (2014) A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral, Bulletin of Mathematical Sciences and Applications, 3: 11–20.
- 13. DM Xin (2010) A Hilbert-type integral inequality with the homogeneous kernel of zero degree, Mathematical Theory

- and Applications, 30: 70-4.
- 14. LE Azar (2013) The connection between Hilbert and Hardy inequalities. Journal of Inequalities and Applications. 2013: 452.
- 15. V Adiyasuren, T Batbold, M Krni'c (2015) Hilbert-type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 18: 111–24.
- 16. Y Hong, YM Wen (2016) A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor, Ann. Math. 37A: 329-36.
- 17. Y Hong (2017) On the structure character of Hilbert's type integral inequality with homogeneous kernel and applications, J. Jilin Univ. Sci. Ed, 55: 189-94.
- 18. Y Hong, QL Huang, BC Yang, JQ Liao (2017) The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications, Journal of Inequalities and Applications 2017: 316.
- 19. Q Chen, B He, Y Hong, Z Li (2020) Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel, J. Funct. Spaces. 2020: 7414861.
- 20. B He, Y Hong Z Li (2021) Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with non-homogeneous, Journal of Inequalities and Applications, 2021;64.
- 21. Y Hong, YR Zhong, BC Yang (2023) On a more accurate half-discrete multidimensional Hilbert-type inequality involving one derivative function of m-order, Journal of Inequalities and Applications. 2023:74.
- 22. Y Hong, YR Zhong, BC Yang (2023) A more accurate half-discrete multidimensional Hilbert-type inequality involving one multiple upper limit function. Axioms. 12: 211.
- 23. BC Yang, JQ Liao (2020) Parameterized multidimensional Hilbert-type inwqualities, Scientific Research Publisheng, 2020, USA.
- 24. Yiyun Li, Yanru Zhong, BCYang (2023) Equivalent statements of two multidimensional Hilbert-type integral inequali-

ties involving one with parameters, Axioms. 12: 956.

- 25. JQ Liao, BC Yang (2023) A new reverse half-discrete Hilbert-type inequality with one partial sum involving one derivative function of higher order. Open Mathematics. 21: 20230139
- 26. AZ Wang, BC Yang (2024) A new half-discrete Hilbert-type inequality involving one multiple upper limit function and one partial sums. Annals Mathematics, 45A: 25-38.
- 27. ZH Zeng, BC Yang (2024) A Hardy-Hilbert-type integral inequality involving the derivative functions of n-order. Journal of South China Normal University (Natural Science Editon), 56: 123-8.
- 28. JC Kuang (2004) Applied Inequalitie, Shandong Science and Technology Press, Jinan, China.
- 29. JC Kuang (2015) Real and Functional Analysis (Continuation), Vol 2, Higher Education Press, Beijing, China.