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Introduction

In  [7],  the  author  used  an  elementary  method  gave  a  short proof of the well-known Holder’s inequality:

where all ak, bk > 0 and  with p, q > 1. �e equali- ty holds when

for all k, j = 1, 2, · · · , n. Moreover, if p = q = 2, inequality (1) reduces to the well-known Cauchy’s inequality:

In [4, 8-10], the authors considered the following function

and proved that for 0 ≤ t1 < t2 < · · · < tk ≤ 1, then the follow- ing interpolation and re�nement of the Holder’s inequality

Like  Holder’s  inequality,  the  well-known  Minkowski’s  ine-
quality plays also an important role in the mathematical and
physics research �elds and literatures. �ere are the most im-
portant,  interesting,  useful  and  elementary  inequalities  in
mathematics, physics and other research �elds. It plays an im-
portant  role  in  mathematics  and  physics  research  �elds  and
has great potential in the future research. �ere were many re-
search papers devoted to the generalizations, re�nements and

applications  of  these  two  important  inequalities.  For  exam-
ples, we refer to the references in [1-11] and the references cit-
ed in them. Since their importance and application potential
both  in  theory  and  practical  applications,  in  this  paper,  in-
spired  by  the  works  of  [4,7-10],  we  are  going  to  present  a
short  proof  of  the  well-known  Minkowski’s  inequality  and
give  a  re�nement  and  an  interpolation  of  it.  Our  results  are
new and given below.

Theorem 1. If ai, bi > 0, i = 1, 2, · · · , n, p > 0, then for p ≥ 1, we have

p
1

q
1+ = 0
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1 Introduction

In [7], the author used an elementary method gave a short proof of the well-known Hölder’s inequality:

n∑
k=1

akbk ≤

(
n∑

k=1

ap
k

) 1
p
(

n∑
k=1

bqk

) 1
q

, (1)

where all ak, bk > 0 and 1
p
+ 1

q
= 1 with p, q > 1. The equality holds when

ap
k

bqk
=

ap
j

bqj
,

for all k, j = 1, 2, · · · , n.Moreover, if p = q = 2, inequality (1) reduces to the well-known Cauchy’s inequality:

n∑
i=1

aibi ≤
n∏

i=1

(
a2
i + b2i

) 1
2 .

In [4, 8-10], the authors considered the following function

h(t) =

m∏
k=1

[
n∑

i=1

(
m∏

j=1

aij

)1−t

(a
pk
ik )

t

] 1
pk

, (2)

and proved that for 0 ≤ t1 < t2 < · · · < tk ≤ 1, then the following interpolation and refinement of the
Hölder’s inequality

h(0) =

n∑
i=1

m∏
j=1

aij ≤ h(t1) ≤ h(t2) ≤ · · · ≤ h(tk) ≤ h(1) ≤
m∏

j=1

(
m∑
i=1

a
pj
ij

) 1
pj

. (3)

Like Hölder’s inequality, the well-known Minkowski’s inequality plays also an important rule in the math-
ematical and physics research fields and literatures. There are the most important, interesting, useful and
elementary inequalities in mathematics, physics and other research fields. It plays an important role in math-
ematics and physics research fields and has great potential in the future research. There were many research
papers devoted to the generalizations, refinements and applications of these two important inequalities. For
examples, we refer to the references in [1-11] and the references cited in them. Since their importance and
application potential both in theory and practical applications, in this paper, inspired by the works of [4,7-
10], we are going to present a short proof of the well-known Minkowski’s inequality and give a refinement
and an interpolation of it. Our results are new and given below.

2

Theorem 1. If ai, bi > 0, i = 1, 2, · · · , n, p > 0, then for p ≥ 1, we have

[
n∑

i=1

(ai + bi)
p

] 1
p

≤

(
n∑

i=1

ap
i

) 1
p

+

(
n∑

i=1

bpk

) 1
p

, (4)

and for 0 < p ≤ 1, we have

[
n∑

i=1

(ai + bi)
p

] 1
p

≥

(
n∑

i=1

ap
i

) 1
p

+

(
n∑

i=1

bpk

) 1
p

. (5)

Theorem 2. Define a C∞ function g(x) as follows

g(x) =

[
n∑

i=1

(ak + bk)
p

] 1−x
p


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(

n∑
k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p




x

. (6)

Then for p = 1, g(x) ≡
∑n

k=1
(ak + bk) ≡ g(0) = constant.

For p > 1, g′(x) ≥ 0 and for 0 ≤ x1 < x2 < · · · < xm ≤ 1, the following inequalities are refinements and
interpolation of g(x):

(
n∑

k=1

(ak + bk)
p

) 1
p

= g(0) ≤ g(x1) ≤ g(x2) · · · ≤ g(xm) ≤ g(1) =

(
n∑

k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p

. (7)

For 0 < p < 1, g′(x) ≤ 0 and for 0 ≤ x1 < x2 < · · · < xm ≤ 1, the following inequalities are refinements
and interpolations of g(x).

(
n∑

k=1

(ak + bk)
p

) 1
p

= g(0) ≥ g(x1) ≥ g(x2) · · · ≥ g(xm) ≥ g(1) =

(
n∑

k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p

. (8)

Moreover,

g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0, ∀x ∈ [0, 1],

and g′′(x) ≡ 0 if and only if g(1) = g(0), in this case, g′(x) ≡ 0 and g(x) ≡ g(0) = constant.

Proof of Theorem 1. For 1 ≤ m ≤ n, set x = am and define

fm(x) = (xp +Am)
1
p +B − [(x+ bm)p + Cm]

1
p (9)

where

Am =
∑
k �=m

ap
k, B =

(
n∑

k=1

bpk

) 1
p

, Cm =
∑
k �=m

(ak + bk)
p . (10)

Hence

f ′
m(x) = (xp +Am)

1−p
p xp−1 − [(x+ bm) + Cm]

1−p
p (x+ bm)p−1 =

xp−1

(xp +Am)
p−1
p

− (x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p
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and for 0 < p ≤ 1, we have

�eorem 2. De�ne a C∞ function g    as follows

For p > 1, g 1 2 m ≤ 1, the fol- lowing inequalities are re�nements and interpolation of g   :

For 0 < p < 1, g (  )≤ 0 and for 0 ≤ 1 < 2 < · · · < m ≤ 1, the following inequalities are re�nements and interpolations of

g   .

Moreover,

and g )  0 if and only if g(1) = g(0), in this case, g )  0

Proof of �eorem 1:  For 1 ≤ m ≤ n, set x = am and de�ne

Where

(  )

(  ) (  )

(  )

== and g )  g(0) = constant.====
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If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.
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Hence

Solving equation f(x) = 0, we get
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interpolation of g(x):

(
n∑

k=1

(ak + bk)
p

) 1
p

= g(0) ≤ g(x1) ≤ g(x2) · · · ≤ g(xm) ≤ g(1) =

(
n∑

k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p

. (7)

For 0 < p < 1, g′(x) ≤ 0 and for 0 ≤ x1 < x2 < · · · < xm ≤ 1, the following inequalities are refinements
and interpolations of g(x).

(
n∑

k=1

(ak + bk)
p

) 1
p

= g(0) ≥ g(x1) ≥ g(x2) · · · ≥ g(xm) ≥ g(1) =

(
n∑

k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p

. (8)

Moreover,

g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0, ∀x ∈ [0, 1],

and g′′(x) ≡ 0 if and only if g(1) = g(0), in this case, g′(x) ≡ 0 and g(x) ≡ g(0) = constant.

Proof of Theorem 1. For 1 ≤ m ≤ n, set x = am and define

fm(x) = (xp +Am)
1
p +B − [(x+ bm)p + Cm]

1
p (9)

where

Am =
∑
k �=m

ap
k, B =

(
n∑

k=1

bpk

) 1
p

, Cm =
∑
k �=m

(ak + bk)
p . (10)

Hence

f ′
m(x) = (xp +Am)

1−p
p xp−1 − [(x+ bm) + Cm]

1−p
p (x+ bm)p−1 =

xp−1

(xp +Am)
p−1
p

− (x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p

.

3

Solving equation f ′(x) = 0, we get

xp−1

(xp +Am)
p−1
p

=
(x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p

and after some calculations, we obtain

x =
bmA

1
p
m

C
1
p
m −A

1
p
m

, (11)

x

(xp +Am)
1
p

=
x+ bm

[(x+ bm)p + Cm]
1
p

. (12)

It follows from equation (9) and x = am that

am + bm
am

=

[∑n

k=1
(ak + bk)

p
] 1

p

(∑n

k=1
ap
k

) 1
p

= c0(> 1) = constant. (13)

That is bm
am

= λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n, we get bk = λak, k = 1, 2, · · · , n.
Substituting above equations into (6), we get

fm(x) =
(∑n

k=1
ap
k

) 1
p +

(∑n

k=1
bpk
) 1

p −
[∑n

k=1
(ak + bk)

p
] 1

p

=
(∑n

k=1
ap
k

) 1
p + λ

(∑n

k=1
ap
k

) 1
p − (1 + λ)

(∑n

k=1
ap
k

) 1
p

= (1 + λ)
(∑n

k=1
ap
k

) 1
p − (1 + λ)

(∑n

k=1
ap
k

) 1
p

= 0.

Since

f ′′
m(x) = (p− 1)

{
Amxp−2(xp +Am)

1
p
−2 − Cm [(x+ bm)p + Cm]

1
p
−2

(x+ bm)p−2
}
,

we get from (8), (9) that

f ′′
m(x) =

(p− 1)A
1+ 1

p bmxp−3(xp +Am)
1
p
−2

C
1
p
m

.

If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that
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g(1)

g(0)
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, g′(x) = g(x) ln
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]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)
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≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln

[
g(1)

g(0)

]
≥ 0, g′′(x) = g(x)
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[
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g(0)
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≥ 0.
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That is bm
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we get from (8), (9) that
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If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that

g(x) = g(0)

[
g(1)

g(0)

]x

, g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
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≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln

[
g(1)

g(0)

]
≥ 0, g′′(x) = g(x)

(
ln

[
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])2

≥ 0.

3

Solving equation f ′(x) = 0, we get

xp−1

(xp +Am)
p−1
p

=
(x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p

and after some calculations, we obtain

x =
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1
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1
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, (11)

x
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1
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. (12)

It follows from equation (9) and x = am that

am + bm
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=

[∑n

k=1
(ak + bk)

p
] 1
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(∑n
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ap
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) 1
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= c0(> 1) = constant. (13)

That is bm
am

= λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n, we get bk = λak, k = 1, 2, · · · , n.
Substituting above equations into (6), we get
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] 1
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) 1
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= (1 + λ)
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) 1
p − (1 + λ)
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) 1
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= 0.

Since

f ′′
m(x) = (p− 1)

{
Amxp−2(xp +Am)

1
p
−2 − Cm [(x+ bm)p + Cm]

1
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−2
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}
,

we get from (8), (9) that

f ′′
m(x) =

(p− 1)A
1+ 1

p bmxp−3(xp +Am)
1
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−2

C
1
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.

If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that

g(x) = g(0)

[
g(1)

g(0)

]x

, g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln

[
g(1)

g(0)

]
≥ 0, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

�at is  = λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n,am

bm
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Since

we get from (8), (9) that

If p = 1, then fm( x)  0, in this case, (4) and (5) becomes equal-

ity for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then fm ( x ) > 0 for all   x > 0, hence fm(x) achieves its

minimum at x = x where x satis�es fm (x) = 0, in this case ine-

quality (4) holds.

If 0 < p < 1, then fm (x) < 0 for all x > 0, hence fm(x) achieves its

maximum at x = x where x satis�es fm (x) = 0, in this case ine-
quality (5) holds. �eorem 1 is proved.

Proof of �eorem 2:  It follows from the expression of g (x)
that

By �eorem 1, if p = 1, then g(x)  g(0) = Σk=1
n(ak + bk)=g(1). If p > 1, then g(1) ≥ g(0), with equality holds if and only if

bk/ak = constant, k = 1, 2, · · · , n. In this case,

�en (7) is an interpolation and a re�nement of (4). If 0 < p < 1, then g(1) ≤ g(0), with equality holds if and only if

bk/ak = constant, k = 1, 2, · · · , n. In this case,

�en (8) is an interpolation and a re�nement of (5). �eorem 2 is proved.
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2

Theorem 1. If ai, bi > 0, i = 1, 2, · · · , n, p > 0, then for p ≥ 1, we have

[
n∑

i=1

(ai + bi)
p

] 1
p

≤

(
n∑

i=1

ap
i

) 1
p

+

(
n∑

i=1

bpk

) 1
p

, (4)

and for 0 < p ≤ 1, we have

[
n∑

i=1

(ai + bi)
p

] 1
p

≥

(
n∑

i=1

ap
i

) 1
p

+

(
n∑

i=1

bpk

) 1
p

. (5)

Theorem 2. Define a C∞ function g(x) as follows

g(x) =

[
n∑

i=1

(ak + bk)
p

] 1−x
p



(

n∑
k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p




x

. (6)

Then for p = 1, g(x) ≡
∑n

k=1
(ak + bk) ≡ g(0) = constant.

For p > 1, g′(x) ≥ 0 and for 0 ≤ x1 < x2 < · · · < xm ≤ 1, the following inequalities are refinements and
interpolation of g(x):

(
n∑

k=1

(ak + bk)
p

) 1
p

= g(0) ≤ g(x1) ≤ g(x2) · · · ≤ g(xm) ≤ g(1) =

(
n∑

k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p

. (7)

For 0 < p < 1, g′(x) ≤ 0 and for 0 ≤ x1 < x2 < · · · < xm ≤ 1, the following inequalities are refinements
and interpolations of g(x).

(
n∑

k=1

(ak + bk)
p

) 1
p

= g(0) ≥ g(x1) ≥ g(x2) · · · ≥ g(xm) ≥ g(1) =

(
n∑

k=1

ap
k

) 1
p

+

(
n∑

k=1

bpk

) 1
p

. (8)

Moreover,

g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0, ∀x ∈ [0, 1],

and g′′(x) ≡ 0 if and only if g(1) = g(0), in this case, g′(x) ≡ 0 and g(x) ≡ g(0) = constant.

Proof of Theorem 1. For 1 ≤ m ≤ n, set x = am and define

fm(x) = (xp +Am)
1
p +B − [(x+ bm)p + Cm]

1
p (9)

where

Am =
∑
k �=m

ap
k, B =

(
n∑

k=1

bpk

) 1
p

, Cm =
∑
k �=m

(ak + bk)
p . (10)

Hence

f ′
m(x) = (xp +Am)

1−p
p xp−1 − [(x+ bm) + Cm]

1−p
p (x+ bm)p−1 =

xp−1

(xp +Am)
p−1
p

− (x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p

.

3

Solving equation f ′(x) = 0, we get

xp−1

(xp +Am)
p−1
p

=
(x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p

and after some calculations, we obtain

x =
bmA

1
p
m

C
1
p
m −A

1
p
m

, (11)

x

(xp +Am)
1
p

=
x+ bm

[(x+ bm)p + Cm]
1
p

. (12)

It follows from equation (9) and x = am that

am + bm
am

=

[∑n

k=1
(ak + bk)

p
] 1

p

(∑n

k=1
ap
k

) 1
p

= c0(> 1) = constant. (13)

That is bm
am

= λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n, we get bk = λak, k = 1, 2, · · · , n.
Substituting above equations into (6), we get

fm(x) =
(∑n

k=1
ap
k

) 1
p +

(∑n

k=1
bpk
) 1

p −
[∑n

k=1
(ak + bk)

p
] 1

p

=
(∑n

k=1
ap
k

) 1
p + λ

(∑n

k=1
ap
k

) 1
p − (1 + λ)

(∑n

k=1
ap
k

) 1
p

= (1 + λ)
(∑n

k=1
ap
k

) 1
p − (1 + λ)

(∑n

k=1
ap
k

) 1
p

= 0.

Since

f ′′
m(x) = (p− 1)

{
Amxp−2(xp +Am)

1
p
−2 − Cm [(x+ bm)p + Cm]

1
p
−2

(x+ bm)p−2
}
,

we get from (8), (9) that

f ′′
m(x) =

(p− 1)A
1+ 1

p bmxp−3(xp +Am)
1
p
−2

C
1
p
m

.

If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that

g(x) = g(0)

[
g(1)

g(0)

]x

, g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln

[
g(1)

g(0)

]
≥ 0, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

3

Solving equation f ′(x) = 0, we get
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=
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and after some calculations, we obtain

x =
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1
p

=
x+ bm

[(x+ bm)p + Cm]
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p
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It follows from equation (9) and x = am that
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=
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p
] 1
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ap
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= c0(> 1) = constant. (13)

That is bm
am

= λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n, we get bk = λak, k = 1, 2, · · · , n.
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1
p
−2

(x+ bm)p−2
}
,

we get from (8), (9) that
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.

If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that

g(x) = g(0)

[
g(1)
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]x

, g′(x) = g(x) ln
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g(0)

]
, g′′(x) = g(x)
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≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln
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]
≥ 0, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

3

Solving equation f ′(x) = 0, we get

xp−1

(xp +Am)
p−1
p

=
(x+ bm)p−1

[(x+ bm)p + Cm]
p−1
p

and after some calculations, we obtain

x =
bmA

1
p
m

C
1
p
m −A

1
p
m

, (11)

x

(xp +Am)
1
p

=
x+ bm

[(x+ bm)p + Cm]
1
p

. (12)

It follows from equation (9) and x = am that

am + bm
am

=

[∑n

k=1
(ak + bk)

p
] 1

p

(∑n

k=1
ap
k

) 1
p

= c0(> 1) = constant. (13)

That is bm
am

= λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n, we get bk = λak, k = 1, 2, · · · , n.
Substituting above equations into (6), we get

fm(x) =
(∑n

k=1
ap
k

) 1
p +

(∑n

k=1
bpk
) 1

p −
[∑n

k=1
(ak + bk)

p
] 1

p

=
(∑n

k=1
ap
k

) 1
p + λ

(∑n

k=1
ap
k

) 1
p − (1 + λ)

(∑n

k=1
ap
k

) 1
p

= (1 + λ)
(∑n

k=1
ap
k

) 1
p − (1 + λ)

(∑n

k=1
ap
k

) 1
p

= 0.

Since

f ′′
m(x) = (p− 1)

{
Amxp−2(xp +Am)

1
p
−2 − Cm [(x+ bm)p + Cm]

1
p
−2

(x+ bm)p−2
}
,

we get from (8), (9) that

f ′′
m(x) =

(p− 1)A
1+ 1

p bmxp−3(xp +Am)
1
p
−2

C
1
p
m

.

If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that

g(x) = g(0)

[
g(1)

g(0)

]x

, g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln

[
g(1)

g(0)

]
≥ 0, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.
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p
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x =
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m
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p
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p
m
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1
p

=
x+ bm
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1
p
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It follows from equation (9) and x = am that

am + bm
am

=

[∑n

k=1
(ak + bk)

p
] 1

p

(∑n

k=1
ap
k

) 1
p

= c0(> 1) = constant. (13)

That is bm
am

= λ = c0 − 1(> 0) = constant. Let m = 1, 2, · · · , n, we get bk = λak, k = 1, 2, · · · , n.
Substituting above equations into (6), we get

fm(x) =
(∑n

k=1
ap
k

) 1
p +

(∑n

k=1
bpk
) 1

p −
[∑n

k=1
(ak + bk)

p
] 1
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=
(∑n

k=1
ap
k
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) 1
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(∑n
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) 1
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p
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Since

f ′′
m(x) = (p− 1)

{
Amxp−2(xp +Am)

1
p
−2 − Cm [(x+ bm)p + Cm]

1
p
−2

(x+ bm)p−2
}
,

we get from (8), (9) that

f ′′
m(x) =

(p− 1)A
1+ 1

p bmxp−3(xp +Am)
1
p
−2

C
1
p
m

.

If p = 1, then fm(x) ≡ 0, in this case, (4) and (5) becomes equality for all ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ n.

If p > 1, then f ′′
m(x) > 0 for all x > 0, hence fm(x) achieves its minimum at x = x where x satisfies

f ′
m(x) = 0, in this case inequality (4) holds.

If 0 < p < 1, then f ′′
m(x) < 0 for all x > 0, hence fm(x) achieves its maximum at x = x where x satisfies

f ′
m(x) = 0, in this case, inequality (5) holds. Theorem 1 is proved.

Proof of Theorem 2. It follows from the expression of g(x) that

g(x) = g(0)

[
g(1)

g(0)

]x

, g′(x) = g(x) ln

[
g(1)

g(0)

]
, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.

By Theorem 1, if p = 1, then g(x) ≡ g(0) =
∑n

k=1
(ak + bk) = g(1).

If p > 1, then g(1) ≥ g(0), with equality holds if and only if bk
ak

= constant, k = 1, 2, · · · , n. In this
case,

g′(x) = g(x) ln

[
g(1)

g(0)

]
≥ 0, g′′(x) = g(x)

(
ln

[
g(1)

g(0)

])2

≥ 0.


