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Abstract

�is  paper  presents  a  novel  approach  of  computer  mod-
elling  to  predict  degradation  of  and  drug  release  from
bioresorbable  polymers.  Various  uncertain  elements  in  a
mathematical model for polymer degradation and drug re-
lease  are  replaced  by  arti�cial  neural  networks  (ANNs).
Two examples of the uncertain elements are (a) the depen-
dence of di�usion coe�cients on concentration and poros-
ity and (b) the order of reaction rate for hydrolysis leading
to  polymer  chain  cleavage.  �e  ANNs  are  trained,  while
being nested in the mathematical  model,  to minimise the
error  of  predictions  for  molecular  weight,  mass  loss  and
drug  release.  �is  e�ectively  provides  the  mathematical
model, in the format of partial di�erential equations, with
the  ability  of  machine  learning.  �e  approach  was  �rstly
applied to a well-known case in the literature on the size ef-
fect of degradation of poly-lactide-co-glycolide (PLA/GA).
Secondly the interaction between a basic drug and the hy-
drolysis  chain  session  of  PLA/GA  was  considered.  It  was
demonstrated that the model with nested ANNs can learn
from the experimental data to make accurate predictions.

Keywords:  Polymer  Degradation;  Drug  Release;  Mod-
elling;  Artificial  Neural  Network;  Nested  Machine
Learning
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Introduction

Following  some  early  setbacks  in  developing  bioresorbable
coronary stents [1], major e�orts are being made to learn the
lesion  and  develop  the  next  generation  of  bioresorbable  im-
plants. Some recent examples can be found in refs [2-4]. Po-
lyesters such as polylactides (PLA) and their copolymers with
polyglycolides (PGA) are the most commonly used biodegrad-
able polymers for medical implants due to their susceptibility
to hydrolytic degradation within the human body. �e degra-
dation  products  of  these  polyesters  are  generally  non-toxic
and can be safely absorbed or excreted by the body, minimis-
ing  long-term  biocompatibility  issues.  �is  process  begins
with the di�usion of water molecules into the amorphous re-
gions  of  the  polymer,  initiating  the  cleavage  of  ester  bonds.
As  hydrolysis  progresses,  the  molecular  weight  of  the  poly-
mer reduces and short chains di�use out of the polymer lead-
ing to  mass  loss  of  the  implant.  Eventually  the  polymers  are
metabolised into carbon dioxide and water through pathways
in the Krebs cycle. �e degradation rate of the polyesters can
be e�ectively controlled by adjusting material factors such as
initial  molecular  weight  and  crystallinity,  enabling  them  to
meet various biomedical needs, such as drug delivery and tis-
sue engineering. �e degradation rate is also signi�cantly in-
�uenced  by  local  and  environmental  factors,  including  the
pH of bodily �uids, enzymatic activity and local tissue in�am-
mation. In addition, embedded drugs in the implants can af-
fect the degradation of the polymers - the hydrogen ions from
acidic drugs or the hydroxide ions from basic drugs can alter
the hydrolysis rate signi�cantly. Due to the long-term nature
of the degradation (from a few months to several years), tailor-
ing the degradation and drug release rates through trial-and-
error experiments is a major challenge in developing clinical
applications [3,4].

Mathematical  models  have  been  developed  to  describe  the
degradation  of  polyesters  [5-7]  and  drug  release  from  these
polymers  [8,9].  A  comprehensive  treatment  of  these  mathe-
matical models can be found in the book edited by Pan [10].
A recent example of applications of these models in stent de-
sign can be found in [11].  Typically,  these models  are in the
format of a set of partial di�erential equations (PDEs) which
can  be  solved  using  commercial  �nite  element  so�ware  for
practical design cases [12]. It has been demonstrated that th-
ese models can capture the general trends of device degrada-
tion and drug release, but o�en fail to precisely �t with the ex-

perimental  data.  �e inaccuracy  is  caused  by  various  uncer-
tainties in the mathematical models. A typical example is the
di�usion  coe�cient  (of  short  oligomers  or  drug  molecules)
which depends  on the  concentration of  the  di�using species
and  the  porosity  of  the  di�usion  medium,  both  of  which
changes signi�cantly as the polymer degrades. Accurately cali-
brating the dependence directly from experiment is challeng-
ing  and  o�en  impractical.  Another  example  is  the  nature  of
the rate equations for the underlying chemical reactions. �e
�rst  order  reaction  is  o�en  assumed  which  may  not  re�ect
the real chemistry of the underpinning process.

A  potential  alternative  approach  of  modelling  is  to  use  ma-
chine  learning.  A  very  active  area  of  research  is  to  replace  a
set of partial di�erential equations (PDEs) with arti�cial neu-
ral networks (ANNs). Di�erent types of ANNs have been de-
signed and trained using numerical solutions of PDEs leading
to  the  so-called  physics-informed  neural  networks  (PINNs).

As a relevant example to this work, Li et al. [13] used a convo-
lutional neural network to learn the �nite element solutions
of  a  reaction-diffusion equation.  All  these  works  took the
PDEs as the “ground truth”, which is not necessarily the truth
at all because of the uncertain elements, such as the di�usion
coe�cient mentioned above, used in the PDEs.

�e central idea of this paper is to replace the various uncer-
tain  elements  in  the  mathematical  model  by  arti�cial  neural
networks  (ANNs).  We  propose  to  combine  the  certain  ele-
ments of the model, such as matter conservation and chemi-
cal  equilibrium,  with  ANNs  that  replace  the  uncertain  ele-
ments. �e bene�t of nesting ANNs in the model is that they
can be trained using experimental data to eliminate the uncer-
tainties.  �ere  are  two  challenges  in  taking  this  approach.
�e �rst one is that training an ANN requires a huge amount
of data while data for long term polymer degradation are very
expensive  and  time  consuming  to  obtain.  �e  second  chal-
lenge is that the existing training algorithms are not designed
for ANNs that are nested inside mathematical equations. Us-
ing the di�usion coe�cient again as an example, training an
ANN to  learn  its  dependence  on porosity  would  require  ex-
perimental data of the di�usion coe�cient at various levels of
porosity.  In  reality  only  mass  loss  and  molecular  weight  are
measured in long-term degradation experiments.

�is  paper  presents  a  novel  method  for  training  the  ANNs
nested  in  a  set  of  mathematical  equations  to  overcome  the
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two  challenges.  �e  method  was  applied  �rstly  to  a  well--
known case in the literature on the size e�ect of degradation
of  PLA/GA [14]  and then secondly  to  a  case  of  drug  release
from PLA/GA microspheres in the literature [15]. In order to
model  the  drug  release  case,  the  interaction  between  a  basic
drug and the hydrolysis chain session of PLA/GA was intro-
duced  into  the  mathematical  model.  �e  two  case  studies
clearly  demonstrated  the  self-learning  capacity  of  our  pro-
posed  approach  by  using  only  limited  experimental  data.

A Model for Interaction Between Basic Drug and Po-
lyester Degradation

Sevim and Pan considered  the  case  of  acidic  drugs  releasing
from microspheres of PLGA [8]. Here we consider the case of
basics  drugs  release.  �e  governing  equations  developed  by
Pan  and  co-workers  [7,8,10,11]  for  degradation  of  biore-
sorbable polyester are modi�ed to consider the interaction be-
tween the polyesters and basic drugs. �e hydrolysis reaction
can be phenomenologically described as

which states that ester bonds are broken down into carboxylic
acids  (R-COOH)  and  alcohols  (R-OH).  �e  carboxylic  end

groups have a high degree of acid disassociation which can be
described as

�e dissociation of basic drug molecules can be phenomeno- logically expressed as

�e disassociation of the carboxylic acid end groups and that
of the basic drug molecules are much faster than the hydroly-
sis reaction of the polyesters. Consequently, they are both as-
sumed to be in equilibrium.

Assuming  water  is  abundant  (they  di�use  into  an  implant
much faster than the implant degradation), the chain scission
rate of the polyester due to the hydrolysis reaction can be em-
pirically written as:

where Rs is the molar number of chain scissions per unit vol-

ume, Ce, CH+ and COH- represent the molar concentrations of es-

ter bonds, hydrogen ions and hydroxide ions respectively, k1,

k2 and k3  are the phenomenological rate constants. �e �rst
term on the right-hand side represents non-catalyzed hydroly-
sis,  the  second  term  represents  acid-catalyzed  hydrolysis,
while the last term represents the interaction between drug
and polymer.

�e hydrogen ions (H +) can come from three sources: (a) the
surrounding solution in the order of 10-pH , (b) reversible hy-
drolysis of the drug molecules in the order of KbCdrug,m/COH-,

where  kb  is  the  acid  dissociation  constant  for  the  drug
molecules  and  Cdrug,m  is  the  mole  concentration  drug
molecules, and (c) the acid disassociation of the carboxylic
acid ends, which can be calculated as

where Ka is the acid dissociation constant. Simple calculations

reveal that (c) dominates CH+ by at least three orders of magni-

tude, hence Eqn. (5) is used to calculate CH+ in Eqn. (4).

COH- in Eqn. (4) can be calculated from the equilibrium ex-
pression as
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�e  rest  of  the  governing  equations  for  computing  (a)  the
molecular  weight  of  the  polyester,  (b)  the  mass  loss  due  to
short chain di�usion and (c) drug di�usion follow the previ-
ous work by Pan and co-workers [7,8,10,11]. For readers con-
venience,  the  full  set  of  equations  are  provided in  Appendix
A.

�e Need for Machine Learning

In a classical case study, Grizzi et. al. [14] demonstared that
thicker plates of PLA/GA degrade faster than thinner ones
due to the autocatalytic e�ect. �e acid disassociation of the
polymer chain ends increases the local acidity and leads to
faster degradation. In the thin plates, short chains are able to

di�use out which reduces the autocatalytic e�ect. Grizzi et. al.
were the �rst to highlight the size e�ect of PLA/GA degrada-
tion. In a systematic study, Fitzgerald and Corrigan [15] me-
saured both the degradtion of and the levamisole release from
their PLA/GA mcrospheres. �ey demonstrated that the ba-
sic drug accelerates the polymer degradation. �ese two com-
plementary work are used in this paper as our case studies.

Figure 1 and Figure 2 present our best e�ort in �tting the ex-
perimental  data  by  using  the  mathematical  model  presented
in  Appendix  A.  Five  cases  are  presented  here  including  the
degradation of PLA/GA plates of thicknesses of 0.3 mm (case
A) and 2 mm [14] (case B), and the degradation of PLA/GA
microspheres  and  drug  release  of  loadings  of  levamisole  at
2.4% (case  C),  14.3% (case  D),  and  19.7% (case  E)  [15].  For
the plates, the equations were solved for the one-dimensional
reaction-di�usion  problem  while  for  the  micro-spheres,
spherical symmetry was assumed in the numerical solution. A
central �nite di�erence scheme was used to discretize the se-
cond terms on the right-hand side of Eqns. (A-6) and (A-7).
An  ODE  solver  in  MATLAB  was  used  for  the  time  integra-
tion. �e kinetic parameters in the model (see Table B in Ap-
pendix  B)  were  varied  manually  over  a  very  large  range  to
search  for  those  that  give  the  best  �t.  �e  further  details  of
the numerical  solution and the set  of  model  parameters  that
generated the numerical  solutions shown in Figs.1 and 2 are
provided in Appendix B.

Figure 1: Temporal evolutions of normalised average molecular weight and normalised mass loss for cases A and B, numerical-
ly calculated by solving Eqns. (A.1)-(A.10), in comparison with experimental data in [14]. Solid lines represent the model pre-

diction and discrete symbols represent corresponding experimental data.

(a) Case A – PLA/GA plates of 0.3mm in thickness 

(b) Case B – PLA/GA plates of 2mm in thickness  
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Figure 2: Temporal evolutions of normalised average molecular weight (Fig 2.a) and normalised drug release (Fig 2.b) for drug
loadings of levamisole at 2.4% (case C), 14.3% (case D), and 19.7% (case E), which were numerically calculated by solving Eqns.
(A.1)-(A.10), in comparison with experimental data in [15]. Solid lines represent the model prediction and discrete symbols rep-

resent corresponding experimental data.

It  can  be  observed  from  these  �gures  that  the  mathematical
model is only good enough as an approximate guide in most
the cases. �e governing equations in Appendix A consist of
two parts: (I) principles that cannot be violated such as mat-
ter conservation during chemical reaction and di�usion, Eqns
(A.6) and (A.7), and (II) empirical rules such as the reaction

rate  equation (A.1),  the  expressions  for  di�usion coe�cient,
Eqns (A.9), (A.30), and the rate equation for oligomer produc-
tion  of  Eqn.  (A.3).  �e  validity  of  these  empirical  rules  de-
pends on many factors and therefore represents a high degree
of  uncertainty in the mathematical  model.  In this  paper it  is
proposed  that  these  empirical  rules  are  replaced  by  arti�cial

(a) Molecular weights as function of time  

(b) Levamisole release as function of time  
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neural networks which are summarised in Table 1.

Table 1: Input and output of feed forward neural networks (FNNs)

Sub-model inputs output Number of
layers

Chain scission rate (Eqn. (A.1)) 5

Oligomer production rate (Eqn. (A.3)) 4

Drug di�usion coe�cient (Eqn. (A.9)) D
drug

5

Oligomer di�usion coe�cient (Eqn. (A.8)) D
ol

5

Figure  3  illustrate  how  a  feedforward  neural  network  was
used in our model. In forward predictions, the ANN process-
es input data through multiple layers to generate a �nal out-
put. Firstly, the input data is fed into the network, where each
feature  is  passed  to  neurons  in  the  hidden layers.  Each neu-
ron processes the input by applying a weighted sum with bias-
es to it and then passing the result through an activation func-
tion,  such  as  ReLU  or  Sigmoid,  to  introduce  non-linearity.
�e output from each neuron is then sent to the next layer, re-

peating the process through all hidden layers produces a pre-
diction. E�ectively the ANN is just a set of mathematical oper-
ations that calculate an output variable, e.g. the chain session
rate,  from  the  input  concentrations  of  the  reaction  species.
Once the weights and biases are known, it is straightforward
to implement the ANN in the mathematical model. �e chal-
lenge is to obtain the weights and biases that lead to accurate
predictions  of  the  mathematical  model,  a  process  known  as
training or back-propagation in machine learning.

Figure 3: Schematic representation of FNN architecture



Page 7 J Biodegrad BioRem

SCIENTIFIC EMINENCE GROUP | www.scien�ficeminencegroup.com Volume 3 Issue 1

Nested Machine Learning

Training an ANN requires a huge amount of data. Fortunate-
ly the ANNs have the ability of transfer learning, that is, they
can accumulate knowledge by updating the weights and bias-
es repeatedly. An ANN can be trained �rstly using data gener-
ated  from  analytical  theories  instead  of  experimental  data,
and then re-trained using limited experimental data. We have
demonstrated  this  two-step  training  approach  in  a  previous
work [16].  �is  approach is  adopted here,  the  ANNs shown

in Table 1 were all �rstly trained by data generated using the
corresponding analytical equations (presented in Appendix
A). Although these empirical equations may not be fully accu-
rate, they o�er a solid foundation by capturing the initial rela-
tionship between variables in the model.

In the second step, the pre-trained ANNs are implemented in-

to  the  governing  equations.  Unfortunately,  all  the  existing
back-propagation algorithms were designed for minimising a
loss  function  that  is  de�ned  by  the  outputs  of  the  ANN.  In
our  case  the  loss  function  can  only  be  de�ned  by  using  the
output  of  the  entire  mathematical  model  instead  that  of  the
ANN. For example, experimental data exists only for drug re-
lease rather than the drug di�usion coe�cient. Consequently,
the  loss  function  can  only  be  de�ned  by  the  di�erence  be-
tween  the  predicted  and  measured  drug  release  pro�les.  A
training algorithm is required for the ANN nested in the mod-
el  to update its  weights  and biases  to minimising this  di�er-
ence.

Backpropagation Algorithm for Training ANNs Nest-
ed in a Finite Element Package

An ANN nested in the governing equations can be trained by
minimising the mean squared error of

Where M is the experimental data for the measured variable,
 is the vector of the corresponding variable estimated by the

governing equations with a nested ANN, A is the total num-
ber of experimental data and N is the batch size. Speci�cally,

 can be calculated from the governing equations with the

nested  ANN.  In  this  paper,  M  =  [normalised  molecular

weight, normalised mass loss, normalised drug release].

�e  training  dataset  for  the  ANN  is  denoted  as
. Using the chain session rate as an ex-

a m p l e ,   F o r
each , the components of the vectors in the
hidden and output layers can be calculated by

where l indicates the layer, f (z) is the activation function and
 are the components of the weights and biases in the

l  l a y e r ,  r e s p e c t i v e l y .  H e n c e ,
 are the components of

the input and ANN’s estimated output vectors, respectively.

Each iteration of gradient descent updates the weights accord-
ing to

where α is the learning rate and  is the partial derivative of J in terms of the weights in the l layer. Considering the output
layer, we have
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Calculating  is a major challenge due to the intricate
nature of the governing equations. However, upon careful ex-

amination of Eqn. (10), it becomes apparent that J’ will multi-
ply the learning rate α, which is empirical in machine learn-
ing. Certain algorithms, such as Adam, adjust the learning

rate  dynamically  throughout  the  training  process.  Conse-
quently,  the  precise  value  of   becomes  irrelevant,
whilst its sign plays a critical role. It is therefore proposed that
one doesn’t calculate the actual value of  and use α to
incorporate its e�ect. Consequently eqn. (10) is rewritten as

where the sign of ± is determined by the relationship between
the  variables  measured  in  the  experiment  (such  as  drug  re-
lease) and the output variables of the ANN (such as drug dif-
fusion coe�cient). Since these variables have physical mean-
ings, for each speci�c chemical or physical process under con-

sideration, the sign can be determined by logic derivation and
then checked by numerical  calculations.  �is  leads  to  a  very
simple  backpropagation  algorithm  of  Eqns.  (9)  and  (11)  for
ANNs nested in the governing equations.

�e terms in Eqn. (11) can be calculated by

Similarly,  the  partial  derivatives  of  the  hidden  layers  can  be written as

Where
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with

where rl is the number of vector components in the l layer. �e biases are updated using similar approach such that

�e algorithm proposed above is  generally valid for training
ANNs nested in any partial di�erential equations (PDEs).

It is obvious that an increase in the chain session rate, 

leads to a decrease in molecular weight, Mn; an increase in oli-

gomer production rate ,  leads to an increase in mass
loss, and an increase in drug and short chain di�usion coe�-

cients,  Dol  and Ddrug,  leads to an increase in drug release.
Hence the corresponding signs in Eqn. (11) was – for chain
session rate and positive for all the others.
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Hyperparameters,  Training  Data  and  Re�ned  Algo-
rithm for the ANNs

�e �rst and last two ANNs in Table 1 consist of an input lay-
er, three hidden layers with 64, 32 and 16 neurons respective-

ly, and an output layer. �e second ANN in Table 1 compris-
es an input layer, two hidden layers with 32 and 16 neurons,
and an output layer. �ese ANNs were implemented using
the Keras-TensorFlow machine learning library. �e training
data  were  scaled  using  MinMaxScaler,  AbsMaxScaler  and
QuantileTransformer from Python’s sklearn library. Leaky Re-
LU activation functions were used in all hidden layers, and a
linear activation function was used in the output layer.

For  the  pre-training,  Adam algorithm was  used to  minimise
the  mean  squared  error  of  the  outputs,  with  a  batch  size  of
128 and 1000 epochs. �e training dataset were generated us-
ing the analytical equations. �e range of the dataset were de-

termined from the numerical solutions presented in Figure 1

and Figure 2. Within this range, 30,000 sets of synthetic input
data were randomly generated in Excel using the RANDAR-
RAY function. Subsequently, the corresponding output val-
ues were computed using Eqns (A.1), (A.3), (A.8) and (A.9).
�is set of synthetic and labeled input-output data was util-

ized to train the ANNs shown in Table 1. Four separate da-
tasets were created to accommodate the speci�c requirements
of each ANN. All the datasets were split into training, valida-
tion, and test sets in an 80:10:10 ratio.

For the nested training, numerical solutions (forward predic-
tion) for the molecular weight, mass loss and drug release as
functions of time can be obtained by using a combination of
the  central  �nite  di�erence  scheme  and  MATLAB  ODE
solver. �e loss function of Eqn. (7) can then be calculated at
the discrete times when experimental data are available. Eqns.
(9)  and  (11)  can  then  be  used  to  update  the  weights  while
Eqns.  (18) can be used to update the biases.  Due to the very
limited number of experimental data points, a further re�ne-
ment  of  the  backpropagation  scheme  was  necessary  which
consisted  of  the  following  steps:

between any two experimental data points, values of
the input variables for the ANNs (see Table 1) were
generated from the forward prediction and recorded
in a dataset for all the �nite di�erence nodes and for
all the time integration steps.

between the two experimental data points, the value
of the loss function is labeled against the first data
point only.

using this single value of the loss function, the weights
and biases of the ANNs are repeatedly updated for the
entire dataset of step (i).

then  the  forward  prediction  is  repeated  using  the
updated weights and biases and the scheme moves to
the next experimental data point.

(i) to (iv) is repeated until the last experimental data
point is reached.

if the value of the loss function is still unacceptable,
the entire process of (i) to (v) is repeated.

It  was  found  that  repeating  the  entire  process  (step  vi)  for
over 1000 times is necessary for the nested training to be suc-
cessful. �e success of training an ANN can be easily judged
by the fact that the obtained weights and biases can give cor-
rect predictions for the experimental data.

For cases A and B of PLA/GA plates, the ANNs replacing rate
equations for chain session and oligomer production were re-
trained using the algorithm. �e loss function is to minimise
the di�erence between the predicted and measured values of
the  normalised average  molecular  weight  and mass  loss.  For
Cases  C  to  E  of  drug  release  from  the  microspheres,  all  the
ANNs  presented  in  Table  1  were  retrained  using  the  algo-
rithm. �e loss function was extended to also minimizing the
di�erence between the predicted and measured values of nor-
malised drug release.

Results

Pre-training  of  ANNs  Using  Data  Generated  From
Analytical  Equations

To demonstrate the capacity of the ANNs in capturing the an-
alytical  equations,  scatter  plots  of  predicted  values  by  the
ANNs vs. true values (calculated from the equations, all nor-

malised) are depicted for the rate of chain scission in Figure

4(a) and rate of oligomer production in Figure 4(b) respec-
tively. 24000 data points were used in each of the �gures. A
data point falling on the line of 45 degrees means the ANN is
precise at that pair of values. It can be observed that all the
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points form a narrow black band well within 0.5% of the error band (shown by the two read lines).

Figure 4: Scatter plots of predicted values vs. true values (normalised) for ANNs trained using data generated from the analyti-
cal equations for Case A (PLA/GA plates of 0.3mm in thickness); (a) rate of molar number of chain scission per unit volume

and (b) rate of molar number of oligomer concentration per unit volume. �e root mean squared errors (RSMEs) are also
shown.

To demonstrate the feasibility of nesting ANNs in the mathe-
matical  model,  Eqns.  (A.1)  and  (A.3)  were  replaced  by  the

trained ANNs and the equations were solved numerically. Fig-

ure 5 compares the average molecular weight and mass loss
obtained by solving the original equations (dash lines) and
equations with nested ANNs (solid lines). It can be observed
that the two set of results are very close to each other.

Figure 5: Temporal evolutions of normalised average molecular weight and mass loss for Case A obtained by solving the origi-
nal equations (dash lines) and equations with nested ANNs (solid lines).

Nested  Training  of  ANNs  for  Case  A  of  PLA/GA
Plates  of  Di�erent  �icknesses

Figure 6 shows the temporal evolutions of average molecular

weight and normalised mass loss of the PLA/GA plates of two
di�erent  thicknesses  predicted by the governing equations
with ANNs nested, following their retraining by using the al-
gorithm of section 4.2.�e predictions are compared to the ex-



Page 12 J Biodegrad BioRem

SCIENTIFIC EMINENCE GROUP | www.scien�ficeminencegroup.com Volume 3 Issue 1

perimental data obtained from Ref [14]. It can be observed
from the �gures that the predictions have been signi�cantly

improved by comparing to those shown in Figure 1. In case
A, the experimental data for mass loss at the very beginning
of the degradation test was very strange. �e sample lost 5%
of its mass almost instantaneously which cannot be caused by
polymer degradation (as degradation hasn’t really started). It
would  be  reasonable  in  the  computer  model  for  polymer

degradation to ignore the initial mass loss (i.e. subtract all the
data points by 5%). In this work the initial loss was deliberate-
ly kept to test the ability of the nested machine learning ap-
proach to learn from strange experimental data. It can be ob-

served from Figure 6(b) that the model did try its best to pro-
vide a reasonable �t. If the �rst data point was ignored, we
could indeed achieve a perfect �t for mass loss by retaining
the ANN, similar to Case B.

Figure 6: Temporal evolutions of normalised average molecular weight and normalised mass loss for Cases A and B, predicted
by nested ANNs following retraining in comparison with the experimental data [14]. Solid lines represent the model prediction

and discrete symbols represent corresponding experimental data.

Table 2 provides a quantitative measure for the prediction ac-
curacies by the model using nested ANNs in comparison with

the experimental data. �e average prediction error is de�ned
as

Where d is the number of experimental data points.

Table 2: Average prediction errors for Cases A and B (Figure 5)

Case A Case B

average molecular weight Original equations 0.0517 0.1206

With retrained ANNs 0.0420 0.1103

mass loss Original equations 0.4224 5.5546

With retrained ANNs 0.1330 0.0404

(a) Case A – PLA/GA plates of 0.3mm in thickness 

(b) Case B – PLA/GA plates of 2mm in thickness 
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Nested Training of ANNs for Case C-E of Drug Load-
ed Microspheres

Figure 7 shows the temporal evolutions of average molecular

weight (Figure 7 (a)) and drug release (Figure 7 (b)) for the
three different drug loadings using model  nested with the

ANNs following their retraining. By comparing Figure 7 with

Figure 2 (which used the original model), it can be observed
that  retraining  the  ANNs  has  significantly  improved  the

mode accuracy. Table 3 presents the average prediction er-
rors for Cases C-E.

Figure 7: Temporal evolutions of normalised average molecular weight and normalised drug release for Cases C, D and E, pre-
dicted by nested ANNs following retraining in comparison with experimental data [15]. Solid lines represent the model predic-

tion and discrete symbols represent corresponding experimental data
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Case C Case D CaseE

Average molecular weight Original equations 0.2841 0.2679 0.3477

With retrained ANNs 0.1007 0.1709 0.2318

Drug release Original equations 0.0577 0.0906 0.3894

With retrained ANNs 0.0328 0.0132 0.1445

Discussion

�is study represents the �rst attempt to empower the mathe-
matical  models  for  polymer  degradation  with  the  ability  of
machine  learning  in  order  to  eliminate  their  uncertainties.
Such uncertainties  are  a  norm instead of  an exception when
modelling polymer degradation and drug release in the com-
plex biological environment inside a human body. �e ability
of  machine  learning  for  the  mathematical  models  is  a  step
change in the game. �e Absorb Bioresorbable Vascular Scaf-
fold  (Abbott,  USA)  made  of  bioresorbable  polymers  was  an
exciting  development  in  intervention  cardiology  but  had  to
be withdrawn from the market in 2017 due to long-term com-
plications a�er implementation [17,18]. Nevertheless, a large
amount  of  extremely  valuable  data  from  long  term  animal
and clinical  trials  have been accumulated.  �ese data can be
used  to  train  the  mathematical  models  with  nested  ANNs,
leading  to  a  powerful  design  tool  for  the  next  generation  of
bioresorbable implants.

�is study validated the feasibility and capabilities of the pro-
posed approach by accurately �tting the polymer degradation
behaviour in the four di�erent cases. �e ANNs also demons-
trated their capacity in the prediction of size e�ect in the poly-
mer degradation in Case A and B, indicating their applicabili-
ty across various geometries. In Case C-E, the impact of alka-
line drug hydrolysis on polymer degradation was considered,
which was not  addressed in previous studies.  By incorporat-
ing this factor, the model provided a more comprehensive un-
derstanding  of  the  degradation  process,  which  is  crucial  for
optimising the design of bioresorbable implants. �is level of
accuracy was achieved autonomously by the ANNs, requiring
minimal computational resources and time, in contrast to the
time-consuming  process  of  traditionally  manual  improve-
ment  of  the  empirical  mathematical  models.

A notable challenge in training an ANN is the demand for a
huge amount of training data. To address this challenge, this
study adopted a two-step training strategy, �rstly training the

ANNs  to  the  learn  the  empirical  equations,  followed  by  re-
training using experimental data. �is strategy was also used
in [16,19]. �is study expanded the two-step learning strategy
to a general situation where it was not practical to obtain ex-
perimental  data for the direct  output variables  of  the ANNs.
In the case of degradation studies of bioresorbable medical im-
plants,  it  was  impractical  to  measure  experimentally  the
change in di�usion coe�cient or the polymer chain breakage
and the consequent oligomer production. Long-term experi-
mental  data  only  exists  for  the  average  molecular  weight,
mass loss and drug release as functions of time. �e results of
our  work  showed  that  the  two-step  learning  strategy  using
our backpropagation algorithm for ANNs nested in the mod-
el provides a e�ective solution for this problem of lack of di-
rect experimental data.

In our study, attempt was also made to replace the Fick’s First
Law with an ANN. However, this did not lead to any signi�-
cant  improvement  in  the  prediction  accuracy,  revealing  that
the  Fick’s  First  Law  was  valid  in  this  particular  application.
�is is  not necessarily true for many other applications,  and
ANNs  can  always  be  developed  and  trained  using  the  pro-
posed methodology to replace the Fick’s First Law where ne-
cessary.

It is important to note that the proposed approach and back-
propagation algorithm are generally valid for all partial di�er-
ential  equations  (PDEs).  �is  opens  the  door  for  extending
the model to include biological processes, such as tissue regen-
eration  and  di�erentiation,  and  interactions  between  tissue,
released drugs and the degrading polymer, which would have
far  more  uncertainty  and  therefore  bene�t  even  more  from
the nested machine learning.

Conclusions

�is  paper  presents  a  new  modelling  approach  for  polymer
degradation  and  drug  release  by  nesting  arti�cial  networks
(ANNs) in the mathematical equations. �e nested ANNs re-

Table 3: Average prediction errors for Case C-E (Figure 7)
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place empirical rules in the model, thereby combining the cer-
tainty of science with the ability of machine learning, leading
to the removal of uncertainties in the empirical rules. A back
propagation algorithm was presented for training ANNs nest-
ed in the governing equations. �e case studies demonstrated
that  our  mathematical  model  nested  with  ANNs  can  indeed
learn to accurately predict the molecular weight change, mass
loss  and  drug  release  during  PLA/GA  degradation.  �e  ap-
proach  proposed  in  this  study  is  generic  and  valid  for  all
mathematical models. It opens the door for con�dently mod-
elling  interactions  between  drugs,  tissues  and  implants  in  a
complex biological environment.
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Appendix  A.  Governing  equations  for  po-
lyester  degradation  and  drug  release

As mentioned in Sec. 2, this study considered solely the e�ect
of  polymer  hydrolysis  on  the  hydrogen  ion  concentration.
Hence,  Eqn.  (4)  can  be  rewritten  as

Where Cdrug is the volume concentration of the drug and Ce can be calculated by

Where Rol is the molar concentration of all the produced oli- gomers given by

and α and β are empirical constants. In Eqn. (4) and Eqn. (A-1), we have  and  are de�ned by

and m is average degree of polymerisation of oligomers.

In the di�usion part of degradation process, short chains are
randomly produced by the hydrolysis reaction of long chains.

�ose oligomers are di�used out by the concentration di�er-
ence  as  the  driven force.  It  is  the  same for  di�usion of  drug
molecules. We have
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where Eqn. (A-6) is for drug and Eqn. (A-7) is for oligomers,

Col is the molar number of ester bonds in oligomers per unit

volume, Cdrug is the mole concentration of drug and Rdrug is the

mole concentration of drug dissolution

In  which  di�usion  coe�cients  of  oligomers  and  drug
molecules  are  de�ned  as

Where Vpore is porosity and calculated by

�e model has four independent variables: Rs, Rol, Cdrug and

Col. which are governed by (A-1), (A-3), (A-6), (A-7). �ey
can be integrated numerically (using �nite element method
for complex shape for example). Once they are integrated,

normalised mass loss is calculated by the di�erence between

Rol and Col divided by Ceo. Drug release amount is calculated
by the integral of mole concentration of drug.

�e number-averaged molecular weight is given by

Where Ndp0 is the initial average degree of polymerisation of
the polymer.

Appendix  B.  Numerical  Details  and  Model  Parame-
ters

A  �nite  di�erence  scheme  was  used  to  solve  Eqns.  (A.1)  -
(A.13). As di�usion occurred only in one dimension in all the
experiments  conducted,  all  cases  were  simpli�ed  as  one-di-
mensional  problems  with  corresponding  symmetry  condi-

tions.  were calibrated against the experimen-
tal  data  [14]  with  MATLAB  R2022a  (MathWorks,  USA),
whilst the values for the rest model parameters were provided

in Refs. [14][15]. �e values   of model parameters for all cases
are presented in Table B. The temporal evolutions of nor-

malised average molecular weight (Mn normliased by its ini-

tial value Mno and averaged over the volume) and normalised

mass loss (normliased by Ce0 and averaged over the volume),
numerically calculated by solving Eqns. (A.6)-(A.10) in MAT-

#
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LAB for Cases A and B, are plotted in Figure 1. It should be
noted that the sample with the thickness of 2 mm (Case B)
fractured into pieces at around 30 weeks [8]. Consequently,
the predictions made in this study could not be applied to this
condition and, thus, its last data point for normalised mass
loss was excluded. �e temporal evolutions of normalised av-

erage molecular weight and drug release (normliased by fdrug

and averaged over the volume) for Case C-E are plotted in

Figure 2. Apparently, the aforementioned mathematical mod-
el  with  empirical  equations  cannot  fully  match the  actual
degradation behaviour of polymer. Our purpose here is to de-
monstrate that it can nevertheless be used as a starting point
to train ANNs to capture the observed behaviour.

Table B: Values of model parameters in Eqns. (A.1)-(A.10) for Cases A-E.

Material parameters Case A-B Case C-E

M
o
 (g mol

-1

) 72 65

m 4 4

α 28 0.4

β 2 1

C
eo 

(mol m
-3

) 17300 20615

M
no

 (g mol
-1

) 30000 12500

Empirical kinetic parameters Case A-B Case C-E

K
1
 (week

-1

) 1.4 × 10
-4

8 × 10
-
7

 ([mol
-1

 m
3

]
0.5

 week
-1

) 0.000475 1 × 10
-
7

 ([mol-1 m3]0.5 week-1) - 0.004

D0 (m
3

 week
-1

) 8 × 10
-7

1× 10-6

Dpore (m
3

 week
-1

) 8 × 10
-4

1× 10-3

Ddrug0 (m3 week-1) - 6 × 10-14

Ddrug0pore (m3 week-1) - 6 × 10-11
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