
Journal  of  Business  Management  and  Economics  Statistics Open Access
JBME@scien�ficeminencegroup.com

Cite this ar�cle: Gil-Alana Luis Alberiko. J Bus Manage and
Econ Stat (2:105).

Research Ar�cle

Measuring Persistence of the World Population: A Fractional Integration Approach

Luis A. Gil-Alana1, Guglielmo Maria Caporale2, Juan Infante3 and Marta del Rio3

1University of Navarra, DATAI, NCID, Pamplona, Spain, and University Francisco de Vitoria, Madrid, Spain
2Brunel University London, United Kingdom

3University Villanueva, Madrid, Spain

*Corresponding Author

Gil-Alana Luis Alberiko, University of Navarra, DATAI,
NCID, Pamplona, Spain, and University Francisco de Vi-
toria,  Madrid,  Spain,  E-mail:  alana@unav.es,  ORCID:
0000-0002-5760-3123

Citation

Gil-Alana,  L.  A.,  Caporale,  G.  M.,  Infante,  J.,  & del  Rio,
M.  (2024).  Measuring  Persistence  of  the  World  Popula-
tion: A Fractional Integration Approach. Journal of Busi-
ness Management and Economic Statistics, 2, 1-10.

Publication Dates

Received date: March 17, 2024
Accepted date: April 17, 2024
Published date: April 20, 2024

Abstract

�is paper uses fractional integration to measure the de-
gree of persistence in historical annual data on the world
population over the period 1800-2016. �e analysis is car-
ried out for the original series, and for its log transforma-
tion and its growth rate. �e results indicate that the se-
ries are highly persistent; the estimated values of the di�-
encing parameter are above 1, which implies that shocks
have  permanent  e�ects.  Endogenous  break  tests  detect
one main break shortly a�er WWII. �e evidence based
on the corresponding sub-sample estimation indicates  a
sharp fall in the degree of dependence between the obser-
vations in the second sub-sample. Although the original
data  and  their  log  transformation  still  exhibit  explosive
behaviour in that sub-sample, the growth rates are mean-
reverting,  and  thus  shocks  will  only  have  transitory  ef-
fects;  moreover,  there  is  a  negative  time trend.  �is  has
implications for the design of policies aimed at contain-
ing population growth.

Keywords: Population Growth; Long Memory; Fraction-
al Integration; Time Trends
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Introduction

�e world population has increased sharply over the history
of  the  planet.  12,000  years  ago,  it  was  only  4  million,  which
would now be the size of a city. Currently, it is 1860 times larg-
er  than  at  that  time  (see  https://ourworldindata.org/world-p
opulation-growth).  Its  most  signi�cant  growth  has  occurred
in modern times: its size was still under 1 billion at the beginn-
ing  of  the  19th  century  [1];  it  then  increased  sevenfold,  the
current population representing 6.5% of the total  number of
individuals born during the entire history of mankind, which
was estimated to have been 108 billion [2]. Growth was partic-
ularly rapid between 1950 and 1987, when the world popula-
tion  increased  from  2.5  to  5  billion,  the  highest  growth  rate
(2.1%) being recorded in 1962; since then, growth has deceler-
ated, though it remains fast [3].

It should be noted that growth is driven by the di�erence be-
tween births and deaths. Most recently, the increase in deaths
has  not  been  matched  by  a  similar  one  in  births,  which  im-
plies that the world population growth may halt in the near fu-
ture.  �e  'demographic  transition'  model  [4]  explains  how
growth occurs by identifying �ve di�erent stages, namely: (i)
Stage  1:  mortality  and birth  rates  are  both  high;  (ii)  Stage  2:
mortality falls but birth rates are still high; (iii) Stage 3: mortal-
ity is low and birth rates fall; (iv) Stage 4: mortality and birth
rates  are  both  low;  (v)  Stage  5:  mortality  is  low  and  there  is
some evidence of rising fertility (when the fertility rate is low-
er than two, the population decreases in the long run – [3].

�e present study provides evidence on the degree of persis-
tence of the world population. �is is measured using a frac-
tional  integration framework,  where the fractional  di�erenc-
ing  parameter  is  the  estimated  persistence.  �is  approach  is
more general than standard ones based on the I(0) stationary
versus I(1) no stationary dichotomy since it  allows the order
of  integration  to  take  any  real  values,  including  fractional
ones.  As  a  result,  it  encompasses  a  much  wider  range  of
stochastic processes and sheds light on whether or not the se-
ries is mean-reverting (and thus whether the e�ects of shocks
are transitory or permanent) and the speed of the dynamic ad-
justment  towards  the  long-run  equilibrium.  �is  method  is
applied below to analyses the stochastic properties of a world
population series starting in 1800, thus obtaining an interest-
ing set of results with important policy implications.

�e layout of the following: Section 2 brie�y reviews the litera-
ture on world population trends; Section 3 describes the data
and the empirical results: Section 4 o�ers some concluding re-
marks.

Literature Review

�ere  exist  a  number  of  studies  aiming  to  explain  the  ob-
served trends in the world population. For instance, [5] anal-
ysed how small changes in the probabilities of birth, growth,
survival, and migration a�ect population growth [5]. Speci�-
cally, he showed how, in a system of equations in linear di�er-
ences, the biggest eigenvalue corresponds to the speed of pop-
ulation  growth.  A  similar  approach  was  used  by  [6-8]  for
modelling  the  world  population  by  age  groups.  By  contrast,
[9] considered instead a Markov process with a Leslie matrix
for each time interval, and concluded that the world popula-
tion is log-normal, which is consistent with models of geomet-
ric  growth  including  non-negative  growth.  A  logistic  model
was  instead  estimated  by  [10]  to  capture  the  behaviour  of
both  life  expectancy  and  fertility;  however,  they  could  not
reach  de�nite  conclusions  regarding  the  future  path  of  the
world population.

Stochastic demography models have provided new insights in-
to the likely e�ects of increased environmental variability on
population trends [11,12] focused instead on the factors that
can a�ect population trends by causing a decrease in procrea-
tion  in  the  long  run.  [13]  Investigated  the  relationship  be-
tween  economic  development  and  population  growth  and
showed  the  importance  of  migration  and  urbanisation  as
drivers of demographic change. [14] examined the same issue
applying fractional integration and co integration methods to
historical data for Australia, Chile, Denmark, France, the UK,
Italy,  and  the  US  from  1820  onwards.  �ey  found  that  the
GDP and population series are highly persistent, but the evi-
dence on the existence of a long-run equilibrium relationship
linking these two variables is mixed, co integration only hold-
ing in the cases of France, Italy and the UK. Finally, [15] pro-
vided evidence of a linkage between the total fertility rate and
GDP by estimating vector error correction models and carry-
ing out Granger causality tests.

Based on the above literature it is clear that all except [14] use
methodologies that use integer degrees of di�erentiation and
corresponding to 0 in case of stationary series and 1 in case of
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non-stationary  ones.  In  fact,  [14]  is  the  only  one that  allows
fractional degrees of integration, which permits to consider a
higher degree of �exibility in the dynamic speci�cation of the
models. �e present study applies the same method, i.e., frac-
tional integration, to historical data on the world population
rather than on the population in individual countries as [14]
do and thus provides novel evidence.

Data and Empirical Analysis

�e  annual  world  population  series  used  for  the  analysis
spans  the  period  from  1800  to  2016  and  has  been  obtained
from the  'OurWorldinData,  which  is  a  project  of  the  Global
Change Data Lab, a non-pro�t organisation based in the UK
(Registered Charity  Number 1186433),  and is  available  from
the following

website:
https://ourworldindata.org/world-population-growth#how-h
as-world-population-growth-changed-over-time.

'OurWorldinData' meticulously ensures the integrity of its da-
tasets.  �rough  stringent  validation  processes,  the  organiza-
tion  meticulously  cross-references  data  from  various  rep-
utable sources, employing rigorous data cleaning methodolo-
gies to rectify any inconsistencies. Additionally, 'OurWorldin-
Data'  diligently addresses concerns about data completeness,
utilizing  sophisticated  interpolation  techniques  when  neces-
sary,  and  ensuring  consistent  data  quality  across  di�erent
time  periods  by  accounting  for  changes  in  data  collection
methodologies.  Recognizing  the  potential  for  biases,  the  or-
ganization  implements  comprehensive  measures  to  mitigate
their  impact,  including  analysing  data  from  diverse  regions
and demographic groups. �e impeccable reputation of 'Our-
WorldinData'  signi�cantly  enhances  the  credibility  of  our
analysis,  further  supported  by  sensitivity  analyses  and  thor-
ough  discussions  on  potential  limitations,  thereby  a�rming
the robustness of our �ndings regarding global population dy-
namics.

Figure 1: Time series plot

Figure  1  displays  the  evolution  over  time  of  the  �rst  di�er-
enced  series.  It  can  be  seen  that  it  increased  gradually  from
1800  till  the  beginning  of  the  20th  century.  It  then  experi-
enced  a  sharp  decline  during  both  the  First  and  the  Second
World Wars, a�er which it rose sharply, peaking in the 1980s,

before subsiding as a result of a fall in fertility.

We analyse the behaviour of the world population by estimat-
ing a model with deterministic terms as standard in the unit
root literature [33], namely:

where  yt  stands  for  the  series  of  interest,  and  β0  and  β1  are
the intercept and the (linear) time trend coe�cient;1              

however, unlike in the standard unit root model, in our frac-
tional integration framework the error term xt is assumed to
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be integrated of order d, where d can take any real value, including fractional ones, i.e.,

Using  a  Binomial  expansion,  one  can  re-write  equation  (2),

where B is the lag operator, for instance, Bkxt = xt-k, and ut is

I(0) [29-32], as follows:

where the higher the value of d is, the higher is the degree of
association between observations distant in time. Note that if
d = 0 the process  exhibits  short  memory,  whilst  d>0 implies
long memory; if d < 0.5, it is covariance stationary and mean
reverting;  if  0.5  ≤ d < 1 it  is  non-stationary but  mean rever-

sion still occurs; if d ≥ 1, the process is explosive.

We then implement the Lagrange Multiplier (LM) test using
a  version of  the  Whittle  procedure  in  the  frequency  domain
as in Robinson (1994) for the following null hypothesis:

where do can be any real value. �us, under the null (4), the model in (1) and (2) becomes:

and  ut  is  I(0)  by  assumption.  �is  procedure  has  important
advantages with respect to other methods based on unit roots
or fractional integration. �e most important one is that the
limit  distribution  is  standard  normal,  unlike  what  happens
with  the  classical  unit  root  methods  [16-18],  and  this  be-
haviour  holds  even  with  the  inclusion  of  the  deterministic
terms like a  constant and a time trend;  moreover,  do can be
any real value, and this allows us consider non stationary cas-
es, with do ≥ 0.5; �nally, this method [19] is the most e�cient
one in the Pitman sense against local departures. For the func-
tional form of this procedure, see among others [20-22].

�ree  model  speci�cations  are  considered,  namely  without
deterministic terms, with an intercept only, and with an inter-

cept  as  well  as  a  linear  time  trend.  Table  1  displays  the  esti-
mates of d alongside their 95% con�dence intervals, for both
the original and the log-transformed data, under the assump-
tion  of  white  noise  residuals,  whilst  Table  2  presents  the  re-
sults when allowing for autocorrelation in the error term ut,;
in both cases the coe�cients in bold are those from the speci-
�cation selected on the  basis  of  the  statistical  signi�cance  of
the regressors. Note that for the case of auto correlated residu-
als  we  use  the  exponential  spectral  model  of  [23],  which  is
well suited to the framework proposed by [19] and applied in
this study. �is speci�cation approximates AR structures in a
non-parametric way, and results in rapidly decaying autocor-
relation coe�cients [24].

Table 1: Estimates of the di�erencing parameter, d - White noise errors

Series No terms With a constant With a constant and a linear time trend

Original 1.44 (1.34, 1.57) 1.46 (1.36, 1.59) 1.46 (1.36, 1.59)

Log-transformed 0.98 (0.90, 1.10) 1.78 (1.66, 1.92) 1.78 (1.66, 1.92)

�e values in bold are those from the model  selected on the
basis of the statistical signi�cance of the regressors.                  

�e values in parenthesis are the con�dence bands at the 95%
level.
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Table 2: Estimates of the di�erencing parameter, d - Autocorrelated errors

Series No terms With a constant With a constant and a linear time trend

Original 1.38 (1.18, 1.72) 1.41 (1.19, 1.75) 1.41 (1.20, 1.75)

Log-transformed 0.95 (0.81, 1.15) 1.71 (1.30, 2.20) 1.71 (1.30, 2.20)

�e values in bold are those from the model  selected on the

basis  of  the statistical  signi�cance of  the regressors.  

�e values in parenthesis are the con�dence bands at the 95% level.

Table 3: Estimates of the di�erencing parameter, d, for the growth rate series

Series No terms With a constant With a constant and a linear time trend

White noise 0.78 (0.66, 0.92) 0.78 (0.66, 0.92) 0.78 (0.66, 0.92)

Autocorrelation 0.65 (0.30, 1.20) 0.65 (0.30, 1.20) 0.65 (0.30, 1.20)

�e values in bold are those from the model  selected on the
basis  of  the statistical  signi�cance of  the regressors.  �e val-
ues in parenthesis are the con�dence bands at the 95% level.

Concerning the results with white noise residuals (Table 1), it
can be seen that the time trend is not statistically signi�cant,
and the estimated value of d is greater than 1 for both the orig-
inal  data  (1.46)  and  their  log  transformation  (1.78).  As  for
case of (Bloom�eld) autocorrelation in the error term, the re-

sults are quite similar, though the estimates of are slightly low-
er  (1.41  for  the  original  data,  and  1.71  for  the  logged  ones).
We also conducted the analysis for the growth rate, calculated
as the �rst di�erence of the logged values (Table 3).  �e pa-
rameter  d  is  now  estimated  to  be  equal  to  0.78  with  white
noise errors and 0.65 with autocorrelated ones, with the unit
root  null  hypothesis  being  rejected  in  the  former  case  in
favour of mean reversion (d < 1), but not in the latter one.

Table 4: Bai and Perron (2003) break test results

Series N. of breaks Break dates

Original 3 1915; 1948; 1981

Table 5: Bai and Perron (2003) break test results – one break only

Series N. of breaks Break dates

Original 1 1948

Log-transformed 1 1946

Growth rate 1 1946

Given the  long  time span,  it  is  possible  that  breaks  have  oc-
curred. �erefore we carry out the [25] break tests. �ese re-
sults are reported in Table 4. �ree breaks are detected in the
case of the original data (1915, 1948 and 1981) and �ve in the
case  of  the  logged  ones  (1832,  1880,  1915,  1948  and  1981).
�e  same  number  of  breaks  (and  break  dates)  is  found  in

both  cases  for  the  growth  rates,  which  are  calculated  as  the
�rst  di�erences  of  the  logged  series.  However,  splitting  the
sample  accordingly  would  yield  very  short  subsamples  with
unreliable estimates. �erefore, we carry out the tests again al-
lowing for a single break only. �is appears to have occurred
in  1948  in  the  case  of  the  original  data,  and  in  1946  for  the
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logged series and the growth rate (Table 5).

Table 6a: Sub-sample estimates of the di�erencing parameter, d - Original data

White noise errors

Series No terms With a constant With a constant and a linear time Trend

1800 - 1948 2.06 (1.95, 2.17) 3.36 (3.21, 3.59) 3.37 (3.21, 3.59)

1949 - 2016 1.18 (0.98, 1.49) 1.14 (0.98, 1.38) 1.13 (1.00, 1.35)

Autocorrelated errors

Series No terms With a constant With a constant and a linear time Trend

1800 - 1948 2.57 (1.85, 2.89) 2.89 (2.62, 3.14) 2.88 (2.62, 3.14)

1949 - 2016 0.65 (0.26, 1.02) 1.20 (1.00, 1.45) 1.16 (0.99, 1.41)

�e values in bold are those from the model  selected on the
basis  of  the statistical  signi�cance of  the regressors.  

�e values in parenthesis are the con�dence bands at the 95% level.

�e values in bold are those from the model  selected on the
basis  of  the statistical  signi�cance of  the regressors.  

�e values in parenthesis are the con�dence bands at the 95% level.

Table 6b: Sub-sample estimates of the coe�cients from the selected models in Table 5a - Original data

White noise errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 3.36 (3.21, 3.59) 3925.60 (14.43) -----

1949 - 2016 1.14 (0.98, 1.38) 9737.60. (5.89) ----

Autocorrelated errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 2.89 (2.62, 3.14) 3925.62 (11.74) -----

1949 - 2016 1.20 (1.00, 1.45) 9758.65. (5.38) -----

Table 7a: Sub-sample estimates of the di�erencing parameter, d - Logged data

White noise errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 0.99 (0.89, 1.14) 3.52 (3.07, 4.09) 3.66 (3.15, 4.15)

1949 - 2016 0.98 (0.83, 1.19) 1.46 (1.24, 1.76) (1.20, 1.65)

Autocorrelated errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 0.93 (0.75, 1.21) 2.16 (1.09, 2.67) 2.08 (1.07, 2.63)

1949 - 2016 0.91 (0.62, 1.26) 1.09 (0.32, 1.59) 1.08 (0.78, 1.63)
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�e values appearing in bold indicate the signi�cant model 

acccording to the deterministic components. �e values in 

parenthesis are the con�dence bands at the 95% level.

Table 7b: Sub-sample estimates of the coe�cients from the selected models in Table 6a - Logged data

White noise errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 3.52 (3.07, 4.09) 8.265 (184.63) 0.019 (2.27)

1949 - 2016 (1.24, 1.76) 9.456 (209.80) 0.055 (2.26)

Autocorrelated errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 2.08 (1.07, 2.63) 8.266 (138.84) 0.018 (2.05)

1949 - 2016 1.08 (0.78, 1.63) 9.998 (197.59) 0.020 (2.49)

�e values in bold are those from the model  selected on the basis  of  the statistical  signi�cance of  the regressors.  �e val-
ues in parenthesis are the con�dence bands at the 95% level.

Table 8a: Estimates of the di�erencing parameter, d - Growth rates

White noise errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 2.29 (2.02, 2.81) 2.66 (2.15, 3.14) 2.66 (2.15, 3.15)

1949 - 2016 0.48 (0.29, 0.75) 0.41 (0.25, 0.68) (0.32, 0.73)

Autocorrelated errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 1.40 (0.07, 1.82) 1.05 (0.06, 1.63) 1.05 (0.05, 1.64)

1949 - 2016 0.18 (-0.11, 0.70) 0.15 (-0.09, 1.00) 0.58 (-0.06, 1.02)

�e values in bold are those from the model  selected on the basis  of  the statistical  signi�cance of  the regressors.  �e val-
ues in parenthesis are the con�dence bands at the 95% level.

Table 8b: Estimated coe�cients in the selected models in Table 7a - Growth rates

White noise errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 2.66 (2.15, 3.14) 0.0187 (5.16) -----

1949 - 2016 (0.32, 0.73) 0.1613 (4.36) -0.0025 (-2.45)

Autocorrelated errors

Series No terms With a constant With a constant and a linear time trend

1800 - 1948 1.05 (0.05, 1.64) 0.0173 (2.67) 0.0015 (2.21)

1949 - 2016 0.58 (-0.06, 1.02) 0.1761 (4.45) -0.0027 (-2.16)

�e values in bold are those from the model  selected on the
basis  of  the statistical  signi�cance of  the regressors.  

�e values in parenthesis are the con�dence bands at the 95% level.

�e values in bold are those from the model  selected on the
basis  of  the statistical  signi�cance of  the regressors.  

�e values in parenthesis are the con�dence bands at the 95% level.



Page 8 J Bus Manage and Econ Stat

SCIENTIFIC EMINENCE GROUP | www.scien�ficeminencegroup.com Volume 2 Issue 1

�e values in bold are those from the model  selected on the
basis  of  the statistical  signi�cance of  the regressors.  �e val-
ues in parenthesis are the con�dence bands at the 95% level.

Tables 6, 7 and 8 report the estimated values of d correspond-
ing  to  the  two  subsamples  based  on  the  detected  breaks  for
each of  the three series  (original  data,  log-transformed ones,
growth rates), again for the three speci�cations without deter-
ministic  terms,  with  an  intercept  only,  and  an  intercept  as
well as a linear time trend. It is noteworthy that in the case of
the original series (Table 6) there is a substantial reduction in
the degree of integration a�er the break, the estimated value
of d decreasing from above 2 (or even 3) before the break to 1
or around 1 a�er it. Similar evidence is obtained when using
the logged values (Table 7), namely the degree of integration
falls sharply a�er the break; in addition, there is now a signi�-
cant  positive  trend  in  the  second  subsample.  Finally,  in  the
case of the growth rates (Table 8) there is a decrease in the de-
gree  of  integration  from  the  �rst  to  the  second  subsample
(from  2.66  to  0.52  with  white  noise  errors  and  from  1.05  to
0.58 with autocorrelated ones), but the time trend is now neg-
ative  and  signi�cant  in  the  second  subsample  regardless  of
the speci�cation for the error term.

Conclusions

�is  paper  uses  fractional  integration  methods  to  measure
the  degree  of  persistence  in  historical  annual  data  on  the
world population over  the  period 1800-2016.  �e analysis  is
carried out for the original series, and also for its log transfor-
mation and its growth rate. �e results indicate that the series
considered  are  highly  persistent;  in  particular,  the  estimated

values  of  the  fractional  di�encing  parameter  are  above  1,
which  implies  that  shocks  have  permanent  e�ects.  As  a  ro-
bustness  method,  we only  employed classical  unit  root  tests,
and the results,  unsurprisingly did not reject  the evidence of
nonstationarity.  Note,  however,  that  these  methods  (ADF,
1979; PP, 1988; ERS, 1992) simply consider as model speci�ca-
tions  those  based  on d  =  0  and d  =1,  and numerous  studies
have demonstrated the low power of these approaches under
fractional alternatives [26-28].

It should also be noted that these �ndings could be biased in
the  presence  of  structural  breaks  which  have  been  over-
looked.  �erefore  we  also  carry  out  endogenous  break  tests
which suggest that the main break in the data occurred short-
ly  a�er  the  Second  World  War.  �e  evidence  based  on  the
corresponding sub-sample estimation indicates a sharp fall in
the degree of dependence between the observations in the se-
cond  sub-sample.  However,  in  the  case  of  the  original  data
and their log transformation they are still above 1, which im-
plies explosive behaviour and permanent e�ects of exogenous
shocks;  in addition,  there is  a  statistically signi�cant positive
time trend. By contrast, the growth rate of the world popula-
tion,  though  not  covariance  stationary,  is  mean-reverting,
and thus shocks to this series will only have transitory e�ects;
moreover, there is a negative time trend. �is represents im-
portant information for policy makers concerned with demo-
graphic  trends,  since  it  suggests  that  there  are  already  some
factors  at  work  (such  as  a  fall  in  fertility)  slowing  down
growth in the world population; this should be taken into ac-
count  when  designing  policies  aimed  at  containing  popula-

tion growth owing to the limited resources of the planet. 
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