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Abstract

The  current  epilepsy  prediction  methods  have  the

problems of  feature  extraction in  the  fixed frequency do-

main  and redundancy  of  spatial  features,  which  are  diffi-

cult to effectively characterize multi-dimensional features,

resulting in low prediction accuracy. Therefore, for the ef-

fective  interactive  representation  of  spatiotemporal  spec-

tral features, a new multi-scale sparse adaptive convolutio-

nal  network  model  based  on  attention  mechanism  (M-

S-SACN-MM  model)  was  proposed.  The  model  extracts

important features by preprocessing EEG data, construct-

ing  multi-scale  temporal  convolutional  layers,  adaptive

spectral convolutional layers, and sparse regularized graph

convolutional  layers,  and  fuses  multi-domain  features

through  multi-layer  perceptron  and  multi-head  attention

mechanisms to improve the performance of the model. Ex-

perimental results show that the prediction accuracy of the

MS-SACN-MM  model  can  reach  up  to  99.9%  5-30  min-

utes before seizures on the CHB-MIT dataset, showing su-

perior prediction performance.

Keywords:  Computer;  Epilepsy  Prediction;  Multi-Scale

Sparse Adaptive Mechanism; Multilayer Perceptron; Multi-

-Headed Attention; Focus Loss Training Strategy
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Introduction

Epilepsy is one of the most common chronic central nervous

system diseases  worldwide,  characterized  by  suddenness,  re-

currence, and difficulty in curing, posing a great threat to the

quality of life and health of patients. Therefore, accurate pre-

diction of epileptic seizures is of great practical significance.

With the continuous deepening of research on the prediction

of epilepsy onset, machine learning methods have been wide-

ly applied to epilepsy prediction. Al-Hadeethi et al. [1] select-

ed  the  covariance  matrix  to  extract  statistical  features,  used

non-parametric  tests  to  obtain  the  most  significant  feature

set, and built an adaptive enhanced least squares support vec-

tor  machine classification model  to achieve better  results.  Yi

Fangji et al. [2] analyzed sample entropy and Pearson correla-

tion coefficients, selected the optimal feature parameter com-

bination, and achieved good results in the two-class classifica-

tion  of  interictal  and  preictal  periods  using  support  vector

machines.  Vicnesh  et  al.  [3]  extracted  non-linear  features  of

EEG signals,  used them as inputs for decision tree classifica-

tion, and enhanced the inter-pretability of nonlinear features.

Zhou Mengni et al. [4] constructed brainwave feature vectors

based on per-mutation entropy, used them as inputs for sup-

port  vector  machine  learning  models,  and  achieved  predic-

tion before the onset of seizures within 50 minutes. However,

the complexity of epilepsy EEG features makes manual extrac-

tion  highly  limited,  and  traditional  machine  learning  algo-

rithms have limited classification capabilities, making it diffi-

cult to effectively predict epilepsy onset.

In recent years, with the rapid development of deep learning

technology, more and more scholars have started to research

epilepsy  prediction  models  based  on  deep  learning.  Singh  et

al.  [5]  extracted  amplitude  and  power  features  of  different

brainwave  rhythms  as  inputs  for  convolutional  neural  net-

works  and long  short-term memory  networks  to  classify  the

interictal and preictal periods of epilepsy, achieving high accu-

racy. Mane et al. [6] proposed the FBCNet model, which aims

to con-sider filters with multiple cutoff frequencies to extract

information from different frequency bands, thereby enhanc-

ing the model's frequency domain representation. Avcu et al.

[7] proposed a Seizure-Net method, which converts EEG sig-

nals  into  time-frequency  maps  through  short-time  Fourier

transform  and  combines  convolutional  neural  networks  to

achieve automatic seizure detection. Yang et al. [8] proposed

a dual self-attention residual network based on the CHB-MIT

dataset to achieve high-precision epilepsy prediction. Jia et al.

[9] proposed universal graph convolutional network model ar-

chitecture for predicting seizures in 18 patients from the CH-

B-MIT  dataset,  with  an  average  prediction  accuracy  of  92%.

Wang Menghao et al. [10] proposed a novel hybrid neural net-

work  model  that  extracts  time-frequency  domain  features

through multi-scale convolution, combines channel attention

mechanisms to extract spatial features, and achieves a predic-

tion  accuracy  of  83.53%  based  on  time-frequency-space  do-

main features. Liu et al. [11] used a brainwave channel atten-

tion weight learning mechanism to extract discriminative fea-

tures of continuous multi-channel EEG signals.  Kumar et al.

[12]  proposed  a  novel  classification  method based  on du-al-

stream adaptive multi-attention to extract and integrate spa-

tiotemporal  information,  revealing  hidden  emotions.  With

the  development  of  attention  mechanisms,  they  are  also  in-

creasingly  used  in  the  field  of  epilepsy  prediction.  Liu  et  al.

[13]  considered  using  multi-head  attention  mechanisms  to

capture  the  spatial  spectral  features  of  brainwave  signals,

thereby extracting key  information related to  the  spatial  fre-

quency domain.

In the field of epilepsy seizure prediction, an in-creasing num-

ber of methods are being applied to predict seizures, especial-

ly  the  fusion  of  neural  networks  and  attention  mechanisms,

which have achieved good prediction results. Due to the com-

plexity  of  EEG  signals,  it  is  necessary  to  consider  both  the

time  series  features  and  the  electrode  diversity  and  channel

correlations  of  EEG  signals.  However,  in  existing  methods

based on multi-domain representation of spatiotemporal spec-

tra,  there  is  often  data  redundancy,  leading  to  a  decrease  in

the predictive performance of the model. Therefore, methods

that can ignore unnecessary features and significantly extract

spatiotemporal frequency features are important for enhanc-

ing the predictive performance of the model.

Based on the above issues, this article proposes a new multi-s-

cale sparse adaptive convolutional network model (MS-SAC-

N).  By  constructing  a  triple  convolutional  layer,  including  a

bidirectional multi-scale temporal convolution block that ful-

ly considers temporal information, an adaptive spectral convo-

lution block that dynamically extracts optimal frequency do-

main  features,  and  a  regularization  term  enforcing  sparsity

graph convolution block with dimensionality reduction graph

connections,  effective  extraction  of  spatiotemporal  spectral
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features is achieved. The extracted information is used as in-

put  for  the  MLP-Multi-Attention  (MM)  mechanism,  which

performs  multi-domain  feature  fusion  based  on  attention

mechanisms. Considering the issue of imbalanced sample cat-

egories,  a  focal  loss  training  strategy  is  introduced.  Finally,

the network is fully trained on the CHB-MIT dataset to classi-

fy  preictal  and  interictal  stages  of  epileptic  seizures,  thereby

improving prediction accuracy to a certain extent.

Algorithms

This article constructs the MS-SACN-MM feature extraction

model and attention fusion module, as shown in Figure 1.

Figure 1: The overall architecture of the network

Triple convolutional layer

To  effectively  extract  the  spatiotemporal  and  frequency-do-

main features of EEG signals, this paper designs three convo-

lutional  blocks.  In  the  time  feature  extraction  convolutional

block,  a  bidirectional  convolution  is  constructed  to  compre-

hensively  capture  key  features  as  important  precursors  in

EEG  signals  may  exist  in  different  time  periods.  In  the  fre-

quency  domain  feature  extraction  convolutional  block,  an

adaptive  mechanism is  introduced to  dynamically  adjust  the

se-lection  of  frequency  bands  based  on  a  recursive  updating

algorithm to effectively deal with the non-stationarity of EEG

signals and reduce false positives. In the spatial feature extrac-

tion  convolutional  block,  a  sparse  regularization  mechanism

is combined to impose sparsity constraints on the weight ma-

trix and features, removing unimportant edge connections to

significantly improve computation time and reduce memory

consumption.

Bidirectional  multi-scale  temporal  convolutional
block

Build  bidirectional  multi-scale  temporal  convolutional

blocks,  using  convolutional  kernels  of  different  sizes,  intro-

ducing  dilated  convolutions  to  capture  temporal  features  at

different time scales.

Due  to  the  high  complexity  and  long  duration  of  epileptic

seizures,  it  is  designed to use different sizes of  convolutional

kernels  in  bidirectional  time  convolutional  layers  to  capture

time series  features at  different time scales.  This  design con-

structs  three  time  convolutional  layers,  with  two  branches

(forward  and  backward)  for  each  convolutional  layer.  Small

convolutional  kernels  are  used  to  capture  detailed  features,

while large convolutional kernels capture coarse features. The

de-sign  includes  16  input  channels,  32  output  channels,  and

three layers with convolutional kernels of sizes 3, 7, and 21, re-

spectively.  A  kernel  size  of  3  captures  local  features  such  as

rapid changes in peaks or ripples, which can be indicative of

epileptic  activity.  A  kernel  size  of  7  captures  features  at  a

medium time scale,  corresponding to  early  signs  of  epileptic

seizures. A kernel size of 21 captures trends and patterns at a
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long time scale.

Assuming the input time series is   is the ac-

tivation function, then the formula for multi-scale convolu-

tion is (1):

There,  is the output of the k-th convolutional kernel at

time t,  is the i-th weight of the k-th convolutional kernel,

with K being 3,7,21.

Considering  the  long-term  patterns  of  epileptic  seizures,  we

introduce  dilated  convolutions:  introducing  dilation  factors

in  the  convolutional  layer,  which  means  inserting  gaps  be-

tween  the  elements  of  the  original  convolutional  kernel  and

modifying the dilation rate, thus were increasing the receptive

field of the convolutional kernel without adding extra parame-

ters  as  shown  in  Figure  2.  This  allows  the  model  to  capture

long-term dependencies without sacrificing temporal  resolu-

tion.

Figure 2: Receptive field

Build  bidirectional  convolution,  convolve  in  both  forward

and  backward  directions  of  the  time  series,  define  the  com-

plete time period as T, the specific operation is as follows:

Forward convolution: Convolution performed on the input se-

quence in chronological order from time step t=0 to T; rev-

erse convolution: perform convolution on the input sequence

in reverse time order, from time step t=T to 0; merge the for-

ward output feature, yz1, and the backward output feature, yf1,

by simple concatenation to obtain a multi-scale representa-

tion of the time series features. Define the fused feature as Y,

and solve as shown in equation (2):

Adaptive Spectral Convolution Block

Build an adaptive spectrum convolution block, introduce a fu-

sion adaptive mechanism of discrete short-time Fourier trans-

form (DTFT) to dynamically extract EEG data time-frequen-

cy domain features. Traditional DTFT converts time-domain

data into fixed frequency domain, while EEG signals are com-

plex and variable in the frequency domain. Therefore,  intro-

ducing adaptive dynamic feature extraction enriches frequen-

cy domain features.

https://pdfs.fl8.io/www.scientificeminencegroup.com
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Introduce  an  adaptive  filter  composed of  band-stop filtering

and high-pass filtering based on Butterworth filters. First, per-

form high-pass filtering to ensure the removal of low-frequen-

cy  noise,  and  then  perform  band-stop  filtering  to  eliminate

high-frequency  noise  and  low-frequency  drift,  retaining  its

main frequency components and improving the band-stop fil-

tering effect. This can be represented by the formula:

Where, ω[n-c] is the Hanning smoothing window function, ybp [n] is the result after being processed by an adaptive filter,

The process is shown in (4):

Where, cutoff=1Hz is the cutoff frequency for high-pass filter-

ing,lc,hcare  the cut-off frequencies with band-stop filtering,

used to remove frequencies of 60Hz-65Hz and 120Hz-125Hz.

Design  an  adaptive  time-frequency  sequence  integration

mechanism  based  on  the  Least  Mean  Squares  (LMS)  algo-

rithm  with  trainable  parameters,  to  adjust  the  fixed  charac-

teristics of the Fourier transform and dynamically extract fea-

tures in the time-frequency domain. For an input signal x(n)

after passing through a parameter-adjustable horizontal filter,

the output is y(n).The LMS algorithm automatically adjusts

the parameters of the filter based on the error between the out-

put signal y(n) and the desired signal d(n), allowing the filter

to adapt to the time-varying statistical characteristics of the

random signal. The implementation process is as follows:

Let the input signal be a vector (5):

The output of the LMS adaptive filter is then (6):

The  update  formula  for  the  weight  vector  of  the  LMS adap- tive filter is shown as (7), where, e(n) is error signal.

Based on the aforementioned five frequency bands, apply the convolution kernel H(f) in the frequency domain. Convolve

the components of each frequency band, the formula is (8):

The adaptive  spectral  convolution block con-structed in  this

article  introduces  dynamic  periodic  weights  and  extended

DTFT  to  enhance  the  dependency  relationships  in  the  pro-

cessing  of  time  series  data  using  discrete  Fourier  transform.

The  EEG  signal  frequency  domain  is  divided  into  five  com-

mon rhythms: α, β, θ, δ, and γ, each rhythm affecting differ-

ent brain activity states [14]. By analyzing and extracting sig-

nificantly  relevant  information,  irrelevant  features  are  ig-

nored to enhance model performance. Figure 3 shows the vi-

sual spectrum of the α rhythm in patient chb01, where (a) is

the regular DTFT transformation and (b) is the transforma-

tion after the adaptive mechanism is added.

https://pdfs.fl8.io/www.scientificeminencegroup.com
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Figure 3: Chb01 patient α rhythm spectrum

Figure 4: Graph convolution operations

Sparse Graph Convolutional Block

The  graph  is  composed  of  nodes  and  edges  connecting  the

nodes, with a complex structure but containing rich potential

value. Lian et al. [15] proposed a global-local graph convolu-

tional neural network for predicting epileptic seizures, tested

on the Freiburg dataset, and achieved good results. In this pa-

per, we construct sparse graph convolutional blocks, aggregat-

ing  neighboring  and  distant  nodes  in  a  better  way  to  repre-

sent brain structural connections, breaking the common uni-

form distribution rule. We introduce L1 regularization strate-

gy to impose sparsity constraints on the model's weight ma-

trix and features, alleviating the oversmoothing issue caused

by increasing layers, handling redundancy and avoiding fea-

https://pdfs.fl8.io/www.scientificeminencegroup.com
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ture confusion. The graph convolution structure is shown in

Figure 4.

Graph convolutional block based on sparse representation, in-

troducing Hilbert transform for extracting signals in different

frequency bands, extracting instantaneous phase of signals in

different frequency bands for multi-channel correlation analy-

sis. For a given signal x(t), the analytical signal z(t) obtained

by Hilbert transform, instantaneous phase ϕ(t), and instanta-

neous phase difference ∆ϕ(t) are shown in equation (9):

If  two  signals  are  phase  synchronized,  the  phase  difference

Δϕ(t) fluctuates within a certain range without significant in-

crease or decrease over time. Introducing the Phase-locked

value (PLV) to calculate the average cosine value of the phase

difference to evaluate the degree of synchronization, defined

as equation (10):

Where, ejΔϕ(t) is the complex unit representation of phase dif-

ference, N is the total number of time points, and PLV ranges

from 0 to 1, with values closer to 1 indicating higher phase

synchrony.

Design a three-layer graph convolutional layer to capture spa-

tial features of different scales. EEG data from multiple chan-

nels typically represent electrical activities in different regions

of  the brain,  which have certain spatial  correlations between

them. By constructing a three-layer graph convolutional net-

work,  as  shown  in  Figure  5,  brain  graph  structures  are  con-

nected to aggregate features of neighboring nodes, enabling a

deeper exploration of the relationships between channels and

extraction of  spatial  features.  In the first  layer,  local  connec-

tions  are  considered  between  adjacent  electrode  nodes,  and

the  weights  defining  the  adjacency  matrix  based  on physical

distances are determined using a Gaussian kernel function, as

expressed in Equation (11):

Where τ is adjustable parameters, r(i,j) represent the physical distance between channels i and j.

Figure 5: Diagram of brain connectivity
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The second layer  mainly  considers  the  use  of  electrodes  at  a

greater distance to obtain more spatial information, while the

third layer normalizes the node features to enhance the over-

all  regularity  of  the  graph  structure.  In  addition,  combining

activation functions (RELU) and pooling (POOL) operations

enhances the interpretability of the model.

The graph convolution operation is specifically manifested as

follows:  Given  the  adjacency  matrix  A  and  node  features  X,

the node feature matrix of the l-th layer is denoted as H(l+1):

Where, Hl is the node feature matrix of the l-th layer, A ̃ is
the normalized adjacency matrix used to propagate informa-

tion between nodes, Wl is the learnable weight matrix of the l-

th layer, and σ is the ReLU activation function.

Introducing a regularization term enforces sparse representa-

tion [16], by adjusting the regularization coefficient to reduce

the density of the adjacency matrix and node features, obtain-

ing the sparsest representation for each state, thereby filtering

out significant features of different classes to improve the effi-

ciency, generalization ability, and interpretability of the mod-

el.

Introducing L1 regularization, the sparse regularization forms

for the adjacency matrix (A) and node features (H) are shown

in equation (13):

Where, ‖A‖1 is the L1 norm of the adjacency matrix, which is

the sum of the absolute values of all elements in the adjacency

matrix. λA is the regularization coefficient, and the larger the

value of λA,  the sparser the adjacency matrix, ensuring the

most important connections. ‖H‖1 is the L1 norm of the node

matrix, preserving the most important node features.

MLP-MM Mechanism

After extracting the corresponding features, considering both

linear  and  nonlinear  relationships,  this  paper  applies  the

MLP-MM  mechanism  for  interactive  fusion.  The  extracted

time,  space,  and  frequency  domain  features  are  defined  as  a

three-dimensional tensor, Xin ∈R(B×T×F×C), where B is the batch

size, T is the time dimension feature, F is the frequency do-

main feature, and C is the spatial dimension feature. This pa-

per utilizes the powerful feature transformation ability of the

multilayer  perceptron  (MLP)  to  further  process  the  data

fused by the self-attention mechanism. By combining the mul-

ti-head mechanism to capture complex linear or nonlinear de-

pendencies between inputs, the model's ability to process in-

formation in different dimensions is enhanced, thereby pro-

moting multi-domain feature fusion of the processed EEG sig-

nals.

The core of  the multi-head attention mechanism is  to intro-

duce  multiple  attention  heads  on  top  of  the  self-attention

mechanism, learning input data features in parallel [17], con-

sidering each element in the sequence when processing EEG

data, so that the model can capture richer contextual informa-

tion in the sequence data. Based on the three vectors of query

(Q), key (K), and value (V), the relationships between inputs

are established. Existing methods generate these three vectors

from the original input through linear transformations, while

the  multi-domain  representation  of  EEG  signals  mostly  ex-

hibits nonlinearity. For input features processed after embedd-

ing by convolutional modules, Xin ϵR(N×d), (N is the sequence

length, d is the input feature dimension), they are passed into

different "heads" to generate the Q, K, and V vectors.

https://pdfs.fl8.io/www.scientificeminencegroup.com
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In the formula, WQ, WK, and WV are the corresponding map-

ping matrices; the dot product calculation is performed on

the query vector Q and the key vector K to obtain the correla-

tion between positions in the sequence, combined with the

softmax function for normalization, thus obtaining the influ-

ence weight between positions. The formula for calculating at-

tention scores is (15):

In  the  equation,  Attention  (Q,  K,  V)  are  the  attention  func-

tions for query Q, key K, and value V, where  is the dimen-

sion of the key vectors, is the scaling factor to prevent the dot

product of vectors from becoming too large, and KT  is the

transpose of the set of position vectors to be retrieved.

The core idea of multi-head attention mechanism is to divide

the  traditional  single  self-attention mechanism into  multiple

"heads". By calculating multiple independent "heads" in paral-

lel, different attention distributions are computed. The query,

key, and value of each "head" are calculated in different subs-

paces, generating multiple different attention features, which

are then merged. The calculation formula for multi-head con-

catenation is (16):

Where, Wo is the concatenated linear transformation matrix

used for the final output.

Focus Loss Training Strategy

Using the focal loss training strategy to increase the weight of

hard-to-classify samples, alleviate the problem of sample class

imbalance  [18],  improve  AUC  (area  under  the  ROC  curve),

and perform seizure pattern recognition and classification for

epilepsy based on the spatiotemporal  fusion features  of  EEG

signals  over  a  long  time  span.  By  evaluating  and  optimizing

the trained model,  the prediction of  epilepsy seizures  can be

achieved. The focal loss, Lp, can be defined as (17):

Where, p is the probability of correct prediction by the mod-

el, αt is the balancing factor used to adjust the ratio of positive

and negative samples, and γ is the adjustment factor. Due to

the low proportion of positive samples in the dataset, this pa-

per conducts separate analysis for each patient, dynamically

selecting combinations of αt and γ to increase the weight of

positive samples, adjust the loss weight, and reduce overfitt-

ing. As shown in Figure 6(a), the probability density of the

predicted classification for patient chb01 is displayed, with

the overlapping area indicating the ambiguous region. By ana-

lyzing the probability distribution in Figure 6(b), trends of

the loss function under different γ  values can be observed.

The x-axis and y-axis represent the output probability and

corresponding loss value, respectively. For very certain predic-

tions (probability values around 0.75), a larger γ value corre-

sponds to a smaller penalty.

Based on this, this article analyzes the impact of different com-

binations of α� and γ on the AUC values of each patient, us-

ing  polynomial  regression  to  fit  the  relationship  between

AUC and αt and γ, as shown in equation (18):

Where, c0, c1, c2, c3, c4, c5 are the parameters to be fitted, deter-

mined by the method of least squares. As shown in Figure 7,

for patient chb01, the value of αt is chosen as 0.75, and γ is

chosen as 2.
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Figure 6: Analysis of the impact of parameters

Figure 7: Parameter combinations are associated with AUC

Experiment

CHB-MIT Dataset

The study used the CHB-MIT dataset, which sup-ports epilep-

sy  and  EEG  research  and  was  jointly  created  by  the  Mas-

sachusetts Institute of Technology and Boston Children's Hos-
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pital[19].  The dataset  consists  of  23 CHB cases,  with 23 case

records for 22 patients,  including 5 males aged 3 to 22 years

old and 17 females aged 1.5 to 19 years old.  One of the sub-

jects, CHB21, had their record taken again 1.5 years after CH-

B01. Each case contains 9-42 continuous .edf files, with EEG

signals  of  patients  lasting  1h,  2h,  or  4h,  sampled  at  256  Hz

with  16-bit  resolution.  The  records  use  the  international

10-20 system for EEG electrode placement and naming, with

18  channels  recording  the  voltage  difference  between  elec-

trodes, where each channel consists of two vertically adjacent

electrodes. Additionally, the CHB-MIT dataset labels whether

seizures occurred during the patient's record and records the

time of seizure onset.

Data Preprocessing

According  to  the  status  of  epileptic  seizures,  four  time  peri-

ods are divided into pre-seizure, seizure, post-seizure, and in-

terictal periods [20], as shown in Figure 8. The pre-seizure pe-

riod generally lasts from a few minutes to tens of minutes be-

fore  the  seizure;  the  seizure  period typically  lasts  from a few

seconds to a few minutes from the beginning to the end; the

post-seizure  period  refers  to  the  time  from  the  end  of  the

seizure to the recovery of normalcy in a few minutes; the inter-

ictal  period  refers  to  the  long  time  between  the  post-seizure

period and the patient's next seizure, during which the patien-

t's condition is no different from that of a normal person. To

predict epileptic seizures in advance, it is necessary to analyze

the  patient's  brain  electrical  signals  and  effectively  identify

whether  the  patient  is  in  a  pre-seizure  or  interictal  state.

Therefore,  accurately  dividing  epileptic  brain  electrical  sig-

nals  is  a  prerequisite  for  predicting  seizures.

Figure 8: Seizure state

Figure 9: EEG signal after processing

During the  data  collection process,  due  to  the  subjective  be-

havior  of  patients  and  external  influences,  EEG  signals  may

be  contaminated  with  eye  movement  and  muscle  artifacts.

Therefore,  data  cleaning,  filtering,  noise  reduction,  baseline

correction, artifact removal, and data enhancement are neces-

sary. In this study, EEG data was resampled and divided into

fixed-length  segments.  An  8-second  window  size  was  used,

with moving distances of 4s, 2s, and 1s between two consecu-

tive windows, resulting in 8-second data segments.  Indepen-

dent Component Analysis (ICA) was employed at a sampling

rate of 256Hz to remove artifacts and enhance useful compo-

nents while suppressing noise. Epileptic patients exhibit spe-

cific waveforms in their EEG signals during seizures, such as

spike  waves,  sharp  waves,  slow  waves,  spike-slow  complex
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waves,  and  high-frequency  oscillations  [21].  Bandpass  filters

ranging from 0.5Hz to 60Hz and a notch filter at 50Hz were

used to eliminate noise and power line interference. Addition-

ally, baseline correction was applied to remove the DC compo-

nent from the signal, ensuring that the average value within a

selected  time  period  is  zero.  The  preprocessing  work  was

mainly carried out using the EEGLAB software, and Figure 9

shows  the  EEG signals  before  and  after  preprocessing  (4-se-

cond segments).

Model Implementation

This simulation experiment was conducted on the Windows

10  operating  system.  The  experiment  was  carried  out  on  a

computing platform with a GPU of 16vCPU Intel(R) Xeon(R)

Platinum  8352V  CPU  @  2.10GHz  and  3  NVIDIA  GeForce

RTX 4090 24G graphics cards. The relevant code was written

in  Python  3.8  and  implemented  under  the  Pytorch

1.13.1+cu118  framework.

This article uses the publicly available CHB-MIT dataset and

employs  leave-one-out  cross-validation  ten-fold  cross-train-

ing  for  each  patient.  70%  of  the  data  is  used  as  the  training

set, while 30% is used as the test set. The training is conduct-

ed for 200 batches with 100 epochs, totaling 20,000 iterations.

The initial learning rate is set at 0.001 and dynamically adjust-

ed during training to find the optimal solution. The focal loss

function  is  used  along  with  dropout  to  prevent  overfitting,

with a dropout parameter value of 0.5. By combining the fo-

cal loss training strategy and selecting appropriate values for

αt and γ, the issue of class imbalance is addressed, reducing

training loss and improving the reliability of the model. The

results obtained are shown in Figure 10.

Figure 10: Loss curve graph

Result

In  this  section,  in  order  to  evaluate  the  performance  of  the

proposed  MS-SACN-MM  model  for  predicting  epileptic

seizures,  we  analyzed  the  experimental  results  and  assessed

the timeliness and novelty of our method. In the experiments,

we selected recent years' learning-based methods for compari-

son. It  is  worth noting that existing networks often overlook

the  dynamic  frequency  domain  characteristics  and  multi-

-channel  redundancy  properties,  making  it  difficult  to  fully

characterize  the  multidimensional  features  of  EEG  signals.

Therefore, we constructed an adaptive spectral convolution to

dynamically  extract  frequency  domain  characteristics,  effec-

tively extracting useful α, β, θ, δ and γ five common rhythms,

and quantitatively analyzed accuracy (ACC), specificity (SP),

recall rate (RE), and F1 parameters. In response to the large

amount of data redundancy in channel interactions, our ex-

periments introduced a sparse regularization mechanism to

eliminate meaningless node connections, reduce the dimen-

sion  of  the  topological  structure,  and  significantly  retain

strongly correlated features. In this experiment, leave-one-out

cross-validation was used to ensure that each patient's data

was sufficiently trained and tested. To evaluate quantitative

performance, we calculated the values of the area under the

ROC curve (AUC), sensitivity (Sn), and false positive rate (F-

PR) to measure the accuracy of predictions, the sensitivity of
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the model, and the false positive rate. The higher the corre-

sponding values, the better the performance of the proposed

model. Compared to other methods, our proposed model has

significantly improved performance and is more versatile.

The Influence of Different Rhythms

The EEG signal is cropped into segments using a sliding win-

dow of 1 to 5 seconds. Based on the five common rhythms of

EEG signals  –  α,  β,  θ,  δ,  and γ  the  performance of  each

rhythm in different stages and states of epilepsy is analyzed as

shown in Table 1. δ  waves show local enhancement in the

pre-seizure period, significantly enhanced during the seizure

period and post-seizure period. θ  waves show signs of en-

hancement except during the interictal period. α waves weak-

en from the interictal  period to the post-seizure period.  β
waves show no significant changes throughout the process,

while γ waves show abnormal discharge during the seizure pe-

riod.

By  classifying  the  interictal  and pre-ictal  periods  in  the  CH-

B-MIT dataset, it can be considered as a binary classification

problem.  Evaluation  metrics  such  as  ACC,  SP,  RE,  F1  score

are used to predict the classification performance of the mod-

el,  and  the  results  of  epilepsy  prediction  under  different

rhythms  are  shown  in  Figure  11.

Figure 11: Seizure prediction performance at different rhythms

Correlation of Each Channel

Based on the above prediction of  epileptic seizures by divid-

ing  different  frequency  bands,  we  conducted  a  phase

synchronization analysis  to study the functional connections

and relationships between nodes in different channels of fre-

quency band interactions, constructing a phase synchroniza-

tion  matrix  of  multi-channel  brain  areas  to  study  the  phase

coupling relationships between different  brain areas  in EEG,

in order to more comprehensively analyze the impact of mul-

ti-channel  leads  on  predicting  epileptic  seizures.  Each  elec-

trode serves as a node in the network, with the correlation be-

tween channels serving as connections between nodes. The re-

sults of the significant lead correlation analysis for the chb01

patient  recorded in  the  CHB-MIT dataset  are  shown in  Fig-

ure 12.
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Figure 12: Significance analysis of chb01 patients

The  adjacency  matrix  is  used  to  connect  different  nodes  of

various  channels.  The  numbers  on  the  right  indicate  the

heterogeneity between nodes. In the correlation matrix, differ-

ent  colors  on  the  right  represent  different  correlations.  The

higher the overall correlation, the stronger the overall coordi-

nated  activity  of  the  brain  in  the  current  state.  Epileptic

seizures are often accompanied by abnormal high synchrony,

especially  showing  high  correlation  between  channels  in  the

seizure  focus  and  surrounding  areas.  This  can  help  identify

the  propagation  pathway  of  epileptic  activity  and  locate  the

epileptic focus.

Result Analysis

Model Performance Validation

We calculate true positive (TP), false positive (FP), true nega-

tive (TN), and false negative (FN), and test the epilepsy EEG

data samples using the above network model. The confusion

matrix  for  the  predicted  classification  of  chb02  patients  is

shown  in  Figure  13,  from  which  it  can  be  visually  seen  that

the  values  of  TP  and  TN  are  large,  indicating  good  perfor-

mance in correct classification.

Figure 13: Confusion matrix for patient chb02
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We  divided  the  CHB-MIT  data  into  three  parts:  seizure,

seizure enhancement, and non-seizure, and input the prepro-

cessed signal segments into the proposed MS-SACN network.

In addition, we defined the 15 minutes before a seizure as the

preictal period, and at least 2 hours after the end of a seizure

as the interictal period. We evaluated the model performance

by plotting ROC curves, with the false positive rate (FPR) and

true positive rate (TPR) as the x and y axes, respectively.

Figure 14 (a) Shows the predicted ROC curve for patient ch-

b08, with a larger corresponding AUC value indicating better

model  performance.  From the  graph,  it  can be  seen that  the

AUC value is  0.9781,  indicating a  good predictive  result.  (b)

Can be used as a warning for epileptic seizures. When the red

curve shows abnormal  enhancement,  it  can serve as  a  warn-

ing for an impending seizure. The bottom line corresponds to

the  corresponding  seizure  state,  and  a  significant  and  sus-

tained increase in the red curve indicates an ongoing seizure.

Figure 14: Predicted results of patient chb08

The proposed MS-SACN network constructs time, space, and

frequency multidimensional feature extraction convolutional

layers and introduces an attention mechanism for interactive

fusion, which is a competitive method. We use leave-one-out

cross-validation  method  to  divide  patients  into  training  and

test sets, and the results obtained are shown in Table 2, with

AUC values of 0.999 for chb01, chb13, chb16, and chb23. The

p-values  in  the  table  are  used  to  measure  the  significance  of

the results,  with values less than 0.005 indicating high confi-

dence and significant results. Among them, chb22 may have a

p-value less than 0.005 due to uneven sample distribution or

complex noise. Comprehensive analysis shows that our mod-

el has strong predictive and robust performance.

In addition, existing methods such as TA-STS- ConvNet [18]

and STFT+CNN [22]  models  based on convolutional  neural

networks,  DCNN+Bi-LSTMM  [23],  GAM-RNN  [24],  MT-

CRNN  [25],  BN-LSTM-CASA  [26]  models  based  on  recur-

rent  neural  networks  and  their  variants,  CE-stSENet  [27]

based  on  attention  mechanism,  and  BiConvLST-Atten-

tion3D[28]models have achieved good results in EEG feature

extraction,  classification,  and  other  aspects  in  the  time,  fre-

quency, and spatial domains. Table 3 shows the advantages of

our method compared to the above methods.

Ablation Experiment

To better demonstrate the impact of the proposed innovative

points on the prediction results of epileptic seizures, we con-

ducted  ablation  experiments  by  isolating  the  Bidirectional

Multi-Scale Time Convolutional Layer (Bi-Mul-CNN), Adap-

tive  Spectral  Convolutional  Layer  (DF-SFTF),  Sparse  Graph

Convolutional Layer (SR-GNN), and Frequency Domain Fea-

ture  Extraction  Convolutional  Layer  for  seizure  prediction.

The results of the experiment isolating the graph convolution-

al  layer  are  shown  in  Figure  15,  indicating  that  extracting

graph structure information is crucial for predicting epileptic

seizures. The results of the isolated experiments are shown in

Table 4, and upon analysis, we found that effectively extract-

ing  spectral  information  is  crucial  for  predicting  epileptic

seizures,  while  also  constraining  spatial  characteristics.
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Table 2: Prediction performance of CHB-MIT under the MS-SACN-MM model

Patient ID AUC Sn(%) FPR/h p

1 0.999 100.0 0.000 <0.001

2 0.958 98.2 0.003 <0.001

3 0.991 100.0 0.000 <0.001

5 0.963 98.8 0.001 <0.001

6 0.982 100.0 0.005 <0.001

7 0.895 89.4 0.102 0.001

8 0.978 100.0 0.000 <0.001

9 0.966 99.2 0.014 <0.001

10 0.992 100.0 0.000 <0.001

11 0.984 100.0 0.000 <0.001

13 0.999 100.0 0.106 <0.001

14 0.896 89.4 0.103 <0.001

16 0.999 100.0 0.000 <0.001

17 0.956 97.2 0.012 <0.001

18 0.962 100.0 0.000 <0.001

20 0.982 100.0 0.000 <0.001

21 0.926 90.2 0.100 <0.001

22 0.911 96.8 0.200 0.010

23 0.999 100.0 0.000 <0.001

aver 0.965 97.9 0.034 -

Table 3: Comparison of the performance of each model

method AUC Sn(%) FPR/h

DCNN+Bi-LSTM 0.865 90.7 0.592

STFT+CNN 0.886 82.2 1.237

CE-stSENet 0.857 86.0 0.369

 GAMRNN 0.917 88.1 0.053

TA-STS-ConvNet 0.918 96.7 0.072

BiCovLST-Att3D 0.920 97.8 0.107

MT-CRNN 0.948 91.7 -

BNLSTM-CASA 0.956 96.2 -

Ours 0.965 97.9 0.034
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Figure 15: Isolated SR-GNN convolutional layer results

Table 4: Comparison of ablation experimental results

Dataset Methods AUC Sn(%) FPR/h

CHB-MIT Without DF-SFTF 0.926 96.56 0.120

Without SR-GNN 0.935 96.68 0.087

Without Bi-Mul-CNN 0.943 97.95 0.052

Ours 0.956 97.97 0.034

Conclusion

To address the problem of low prediction accuracy and high

false alarm rate caused by the lack of significant multi-dimen-

sional  representation  of  EEG  signals,  this  paper  proposes  a

multi-domain  feature  interaction  model  based  on  multiple

convolutional  blocks  and  attention  mechanism  for  accurate

prediction of epileptic seizures. In the feature extraction part,

different  convolutional  blocks  are  designed  to  meet  the  fea-

ture requirements in time, space, and frequency domains, ob-

taining significantly  correlated features  and reducing feature

redundancy. In the feature fusion part, considering the repre-

sentation of data in space and channels, the MLP-MultiAtten-

tion mechanism is proposed to comprehensively consider lin-

ear and non-linear relationship interactions to fuse multi-di-

mensional features. In the model implementation part, the fo-

cal loss training strategy is introduced to improve the model's

generalization  ability.  Compared  with  other  methods,  our

model  shows significant  improvement,  and experimental  re-

sults demonstrate that our method is highly competitive.
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